Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
You got no jam

Cho tam giác vuông ABC vuông tại A, AH là đường cao.

a) Tính BC biết AB = 6cm, AC = 8cm.

b) Chứng minh tam giác HAB đồng dạng tam giác HCA.

c) Trên BC lấy điểm E sao cho CE = 4cm. Chứng minh BE2 = BH.BC

d) Vẽ phân giác BD. Tính diện tích tam giác CED.

Không Tên
6 tháng 5 2018 lúc 22:31

a)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

                \(AB^2+AC^2=BC^2\)

        \(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

        \(\Leftrightarrow\)   \(BC=\sqrt{100}=10\)

b)  Xét  \(\Delta HAB\)và   \(\Delta HCA\)có:

      \(\widehat{AHB}=\widehat{CHA}=90^0\)

     \(\widehat{HAB}=\widehat{HCA}\)  (cùng phụ với góc HAC)

suy ra:   \(\Delta HAB~\Delta HCA\)(g.g)

c)  Xét \(\Delta ABH\)và  \(\Delta CBA\)có:

       \(\widehat{AHB}=\widehat{CAB}=90^0\)

      \(\widehat{B}\) CHUNG

suy ra:   \(\Delta ABH~\Delta CBA\)  (g.g)

\(\Rightarrow\)\(\frac{BH}{AB}=\frac{AB}{BC}\) 

\(\Rightarrow\)\(BH.BC=AB^2\)  (1)

\(BE=BC-CE=10-4=6\)  \(\Rightarrow\)\(BE=AB\) \(\Rightarrow\)\(BE^2=AB^2\)  (2) 

Từ (1) và (2) suy ra:   \(BE^2=BH.BC\)

d)    \(S_{ABC}=\frac{AB.AC}{2}=24\)

\(\Delta ABC\)   có   \(BD\)là phân giác \(\widehat{ABC}\)

\(\Rightarrow\)\(\frac{S_{BAD}}{S_{BDC}}=\frac{AB}{BC}=\frac{3}{5}\)  

\(\Rightarrow\)\(\frac{S_{BAD}}{3}=\frac{S_{BDC}}{5}=\frac{S_{BAD}+S_{BDC}}{3+5}=\frac{S_{ABC}}{8}=3\)

\(\Rightarrow\)\(S_{BAD}=9\)

Xét  \(\Delta ABD\)và   \(\Delta EBD\) có:

    \(AB=EB\) (câu c)

   \(\widehat{ABD}=\widehat{EBD}\) (gt)

   \(BD:\)chung

suy ra:  \(\Delta ABD=\Delta EBD\) (c.g.c)

\(\Rightarrow\)\(S_{ABD}=S_{EBD}=9\)

\(\Rightarrow\)\(S_{CED}=S_{ABC}-S_{ABD}-S_{EBD}=6\)

p/s: tính diện tích CED còn cách khác, bn dễ dàng c/m tgiac CED ~ tgiac CAB, đến đây thì lm típ nha, 


Các câu hỏi tương tự
nguyễn lê mỹ duyên
Xem chi tiết
Nguyễn Hữu Nghĩa
Xem chi tiết
Hợi Trấn Tuất
Xem chi tiết
Nguyễn Ngọc Minh Hương
Xem chi tiết
Hứa Nữ Nhâm Ngọc
Xem chi tiết
Hứa Nữ Nhâm Ngọc
Xem chi tiết
Dieuhuyen
Xem chi tiết
Phan thị cẩm nhung
Xem chi tiết
Lê Đức Thắng
Xem chi tiết