Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đào Trí Bình

 Cho tam giác nhọn ABC. Về phía ngoài △ABC, vẽ các tam giác vuông cân tại A là tam giác ABD và tam giác ACE. Kẻ AH vuông góc với BC (H ∈ BC). Gọi I là giao điểm H A và DE.

a) Kẻ DN và EM vuông góc với H A (N, M ∈ H A). Chứng minh rằng DN = AH, EM = AH.

b) Chứng minh rằng DI = IE.

Nguyễn Ngọc Anh Minh
28 tháng 10 2023 lúc 8:19

A B C D E H I N M

a/

Ta có

\(DN\perp HA\left(gt\right);BC\perp HA\left(gt\right)\) => DN//BC

\(\Rightarrow\widehat{NDB}+\widehat{CBD}=180^o\) (Hai góc trong cùng phía bù nhau)

\(\Rightarrow\widehat{NDA}+\widehat{ADB}+\widehat{ABD}+\widehat{ABC}=180^o\)

Ta có

tg ABD vuông cân tại A \(\Rightarrow\widehat{ADB}=\widehat{ABD}=45^o\Rightarrow\widehat{ADB}+\widehat{ABD}=90^o\)

\(\Rightarrow\widehat{NDA}+\widehat{ABC}=180^o-90^o=90^o\)

Xét tg vuông ABH

\(\widehat{BAH}+\widehat{ABC}=90^o\)

\(\Rightarrow\widehat{NDA}=\widehat{BAH}\)

Xét tg vuông NDA và tg vuông BAH có

\(\widehat{NDA}=\widehat{BAH}\left(cmt\right)\)

AD=AB (cạnh bên tg cân)

=> tg NDA = tg BAH (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)

=> DN = AH

C/m tương tự ta cũng có tg vuông MAE = tg vuông CHA => EM=AH

b/

Ta có

\(DN\perp HA\left(gt\right);EM\perp HA\left(gt\right)\) => DN//EM

Xét tg vuông DIN và tg vuông EIM có

DN=EM (cùng bằng AH)

\(\widehat{IDN}=\widehat{IEM}\) (góc so le trong)

=> tg DIN = tg EIM (Hai tg vuông có 1 cạnh góc vuông và góc nhọn tương ứng bằng nhau)

=> DI=IE

 

 

 

 


Các câu hỏi tương tự
Lê Khắc Tuấn
Xem chi tiết
Nguyễn Văn Bách
Xem chi tiết
Đỗ Ngọc Nhi
Xem chi tiết
Đoàn Ngọc Phương Uyên
Xem chi tiết
tuyên lương
Xem chi tiết
Tiểu Mã
Xem chi tiết
Trần Ngọc Quyên Vân
Xem chi tiết
Trần Thị Cẩm ly
Xem chi tiết
NGUYỄN THANH	SỬU
Xem chi tiết