Cho tam giác nhọn \(ABC\). Ở miền ngoài tam giác, lấy các điểm \(D,E\)sao cho \(\Delta ABD,\Delta CBE\)là tam giác vuông cân đỉnh \(B\). Chứng minh \(AE=DC,AE⊥DC\)
Cho tam giác nhọn \(ABC\).Ở miền ngoài tam giác, lấy các điểm \(D,E\)sao cho \(\Delta ABD,\Delta CBE\)là tam giác vuông cân đỉnh \(B\). Chứng minh \(AE⊥DC\)
cho tam giác ABC nhọn . Vẽ ra bên ngoài tam giác các tam giác vuông cân đỉnh A là tam giác ABD và tam giác ACE . Gọi M,N lần lượt là trung điểm của BE và DC .
a,chứng minh ĐC=BE ,DC vuông góc với BE
b,tam giác AMN vuông cân
Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )
a,chứng minh rằng IA=IB
b, Tính độ dài IC
c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK
Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE
a, chứng minh rằng BE=CD
b, chứng minh rằng góc ABE bằng góc ACD
c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?
Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:
a, AC=AK và AE vuông góc CK
b,KB=KA
c, EB > AC
d, ba đường AC,BD,KE cùng đi qua 1 điểm
Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:
a, tam giác ABE=tam giác ADC
b,góc BMC=120°
Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh
a,AK=KB
b, AD=BC
Cho tam giác ABC có ba góc nhọn, đường cao AH. Ở miền ngoài của tam giác ABC vẽ các tam giác vuông cân ABE và tam giác ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a. Chứng minh rằng: EM + HC = NH
b. Chứng minh rằng: EN // FM
Cho tam giác ABC có góc A < 900. Vẽ ra phía ngoài tam giác đó 2 đoạn thằng AD vuông góc và bằng AB, AE vuông góc và bằng AC.
a) Chứng minh: DC = BE và DC vuông góc với BE
b) Gọi N là trung điểm của DE. Trên tia đối của tia NA lấy điểm M sao cho NA = NM. Chứng minh AB = ME và tam giác ABC = tam giác EMA
c) Chứng minh: MA vuông góc với BC.
Cho tam giác ABC có góc A bé hơn 90 độ. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng: AD vuông góc và bằng AB, AE vuông góc và bằng AC
a) Chứng minh DC=BE và DC vuông góc với BE
b) Gọi N là trung điểm của DE. Trên tia đối của NA lấy M sao cho NA=NM. Chứng minh AB=ME và tam giác ABC bằng tam giác EMN
c) Chứng minh MA vuông góc với BC
Cho tam giác ABC nhọn; vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là tam giác ABD và tam giác ACE
a, Chứng minh DC = BE và DC vuông góc với BE
b, Gọi H là chân đường vuông góc kẻ từ A đến ED và M là trung điểm của đoạn thẳng BC. Chứng minh A, M, H thẳng hàng
Cho tam giác ABC nhọn.Dựng ở phía ngoài tam giác ABC 2 tam giác vuông ABD và ACE sao cho AD = BD,AE=CE
a.Chứng minh DC = BE
b.DC vuông góc với BE
c.Nếu AC = AB. Chứng minh tam giác ABD = tam giác ACE
d.Gọi M là trung điểm của BC. chứng minh AM vuông góc với DE