Ta có tam giác EPQ cân tại E và CQ là phân giác góc BCA, nên E P Q ^ = E Q P ^ = H Q C ^ = 90 0 − H C Q ^ = 90 0 − P C K ^ .
Do đó E P Q ^ + P C K ^ = 90 0 , nên P K ⊥ A C .
Ta có tam giác EPQ cân tại E và CQ là phân giác góc BCA, nên E P Q ^ = E Q P ^ = H Q C ^ = 90 0 − H C Q ^ = 90 0 − P C K ^ .
Do đó E P Q ^ + P C K ^ = 90 0 , nên P K ⊥ A C .
Cho tam giác nhọn ABC, đường cao AH, H thuộc BC. P thuộc AB sao cho CP là phân giác góc BCA.
Giao điểm của CB và AH là Q. Trung trực của PQ cắt AH và BC lần lượt tại E, F.
2, Chứng minh rằng bốn điểm P ; E ; C ; F thuộc một đường tròn.
Cho tam giác nhọn ABC (AB<AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE. Tia AH cắt BC tại F,
a) Chứng minh AF vuông góc với BC và tứ giác BEHF nội tiếp
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF nội tiếp
c) DF cắt Ce tại N. Qua N kẻ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K. Chứng minh N là trung điểm của IK
Bài 4 : ( 3,5 điểm)Cho tam giác ABC nhọn, vẽ đường tròn (O) đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh tứ giác AEHF nội tiếp
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác AEHF, Tính số đo cung EHF, diện tích hình quạt IEHF của đường tròn (I) nếu góc BAC = 60o, AH = 4 cm.
c) AH giao BC tại D. Chứng minh FH là tia phân giác của góc DFE
d) Chứng minh 2 tiếp tuyến của (O) tại E, F và AH đồng quy tại 1 điểm
Cho tam giác nhọn ABC nội tiếp đường tròn (O). M, N là hai điểm thuộc cung nhỏ A C ⏜
sao cho MN song song với AC và tia BM nằm giữa hai tia BA, BN. BM giao AC tại P.
Gọi Q là một điểm thuộc cung nhỏ B C ⏜ sao cho PQ vuông góc với BC. QN giao AC tại R
3) Gọi F là giao của AQ và BN. Chứng minh rằng A F B ^ = B P Q ^ + A B R ^ .
Cho tam giác nhọn ABC nội tiếp đường tròn (O). M, N là hai điểm thuộc cung nhỏ A C ⏜
sao cho MN song song với AC và tia BM nằm giữa hai tia BA, BN. BM giao AC tại P.
Gọi Q là một điểm thuộc cung nhỏ B C ⏜ sao cho PQ vuông góc với BC. QN giao AC tại R
2). Chứng minh rằng BR vuông góc với AQ
Cho tam giác ABC có ba góc nhọn, AB < AC, nội tiếp đường tròn ( O, R). Vẽ đường kính AD của đường tròn ( O ), đường cao AH của tam giác ABC ( H thuộc BC ) và BE vuông góc với AD ( E thuộc AD ).
a) Chứng minh tứ giác AEHB nội tiếp
b) Chứng minh AH.DC = AC.BH
c) Gọi I là trung điểm của BC. Chứng minh rằng IH = IE
Cho tam giác ABC có D là chân đường phân giác trong, D thuộc BC. Đường thẳng qua D vuông góc với BC cắt phân giác ngoài tại đỉnh A ở I. Vẽ đường tròn (I;ID) cắt AB,AC lần lượt tại E,F. Gọi G là tâm ngoại tiếp tam giác AEF, K là giao điểm của đường đối trung xuất phát từ A của tam giác AEF với (AEF). Chứng minh rằng đường thẳng KG luôn đi qua điểm cố định khi A thay đổi trên cung lớn BC của (ABC).
Cho tam giác ABC nhọn với AB<BC và D là điểm thuộc cạnh BC sao cho AD là phân giác của B A C ^ .
Đường thẳng qua C và song song với AD, cắt trung trực của AC tại E.
Đường thẳng qua B song song với AD, cắt trung trực của AB tại F.
1) Chứng minh rằng tam giác ABF đồng dạng với tam giác ACE.
2). Chứng minh rằng các đường thẳng B E ; C F ; A D đồng quy tại một điểm, gọi điểm đó là G.
3). Đường thẳng qua G song song với AE cắt đường thẳng BF tại Q. Đường thẳng QE, cắt đường tròn ngoại tiếp tam giác GEC tại P khác E. Chứng minh rằng các điểm A, P, G, Q, F cùng thuộc một đường tròn.
cho tam giác ABC vuông tại A (AC>AB) Đường cao AH (H thuộc BC) trên tia HC lấy điểm D sao cho HD=HA . Đường vuông góc với BC tại D cắt AC tại E .
a) CMR hai tam giác BEC và ADC đồng dạng .Tính độ dài BE theo m=AB
b) ọi M là tung điểm của đoạn BE . CMR ha tam giác BHM và BEC đồng dạng . Tính số đo góc AHM
c) Tia AM cắt BC tại G cm \(\dfrac{\text{GB}}{\text{BC}}=\dfrac{\text{HD}}{\text{AH+HC}}\)