Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Chi Chi

Cho tam giác nhọn ABC có AD và BE là hai đường cao cắt nhau tại H.
a) Cho biết góc ABC > góc ACB. Chứng minh rằng HC > HB
b) Vẽ HF vuông góc AB tại F. Chứng minh rằng ba điểm C, H, F thẳng hàng
c) Chứng minh rằng AB + AC > 2AD
d) Chứng minh rằng HA + HB + HC < 2/3 ( AB + AC + BC )
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK

Sooya
9 tháng 7 2019 lúc 13:09

A B C D E H F

Tam giác ABC có : góc ABC > góc ACB (gt)

=> AC > AB (đl)

AD _|_ BC (gt) 

D thuộc BC

=> BD < DC

H thuộc AD 

=> HB < HC  

b, AD; BE là đường cao

ADcắt BE tại H 

=> CH là đường cao (đl)

=> CH _|_ AB (đn)

HF _|_ AB (gt)

=> C; H; F thẳng hàng

zZz Cool Kid_new zZz
9 tháng 7 2019 lúc 15:00

c.

\(AB>AD;AC>AD\left(ch>cgv\right)\)

\(\Rightarrow AB+AC>2AD\left(đpcm\right)\)

d

Kẻ \(HN//AC;HM//AB\)

Theo tính chất cặp đoạn chắn,ta có:\(HM=AN\)

Áp dụng bất đẳng thức tam giác ta có:

\(HA< AM+HM=AM+AN\left(1\right)\)

Do \(BH\perp AC;HN//AC\Rightarrow NH\perp HN\)

Xét  \(\Delta BHN\) ta có:\(BH< BN\left(2\right)\)

Tương tự trong tam giác CHM có \(CH< CM\left(3\right)\)

Tiừ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow HA+HB+HC< AM+AN+BN+CM=AB+AC\)

Tương tự,ta có:

\(HA+HB+HC< AB+BC\)

\(HA+HB+HC< BC+AC\)

\(\Rightarrow3\left(HA+HB+HC\right)< 2\left(AB+BC+CA\right)\)

\(\Rightarrow HA+HB+HC< \frac{2}{3}\left(AB+BC+CA\right)\)


Các câu hỏi tương tự
Anh Thu Duong Thi
Xem chi tiết
Nguyễn Phương Linh
Xem chi tiết
zutaki
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Nguyễn văn công
Xem chi tiết
Thị Huyền
Xem chi tiết
Trịnh Văn Dương
Xem chi tiết
Trà My
Xem chi tiết
Chi Chi
Xem chi tiết