Cho tam giác nhọn ABC. Kẻ AH vuông góc BC tại H. Lấy các điểm D,E sao cho các đường AB, AC lần lượt là các đường trung trực của BH, EH
a) Chứng minh tam giác ADE là tam giác cân
b) Đường thẳng DE cắt AB, AC lần lượt tại M và N. Chứng minh HA là phân giác góc NHM.
c) Chứng minh rằng DAE = 2MHB.
Giúp mình với!!
Cho tam giác ABC . Gọi I, K lần lượt là trung điểm của AB,AC . Trên tia đối của IC lấy điểm M sao cho IM=IC.Trên tia đối của KB lấy điểm N sao cho KN=KB
a) Tính góc MAB+BAC+CAN
b) Gọi H là chân đường cao của tam giác ABC . CMR tam giác MHN cân
Cho tam giác ABC vuông cân tại A có AH là đường cao . Trên tia đối của các tia AC và BA lần lượt lấy các điểm M và N sao cho BN = AM .Chứng minh :
a) Tam giác ABH vuông cân .
b) Tam giác AHM = Tam giác BHN
c) Tam giác MHN vuông cân tại H
cho tam giác abc có 3 góc nhọn. vẽ đường cao ad lấy điểm m sao cho ab là đg trung trực của dm ,lấy điểm n sao cho ac là đg trung trực của dn đg thẳng mn cắt ab,ac lần lượt ở e,f c/m DA là tia phân giác của góc EDF.
Cho Tam giác ABC AB>AC vẽ đg cao AH
a)C/m HB>HC
b)So sánh góc BAH và góc CAH
c) vẽ M,N sao cho AB,AC lần lượt là trung trực của HM và HN. C/m tam giác MAN cân
Cho tam giác ABC có 3 góc nhọn, đường cao AH. Ngoài tam giác lấy 2 điểm M và N sao cho AB là đường trung trục của HM, AC là đường trung trực của HN; M và N cắt AB, AC lần lượt tại E và F. Chứng Minh:
a) Tam giác AMN cân tại A.
b) HA là tia phân giác của góc EHF.
c) AH, EC, BF đồng qui.
Cho tam giác ABC có góc A<90 độ, AH là đường cao của tam giác ABC. Lấy E,F đối xứng với H lần lượt qua AB,AC.Đoạn thẳng EF cắt AB, AC tại M,N.
a, Chứng minh:AE=AF
b,Chứng minh: HA là phân giác của góc MHN
c, Chứng minh: AH,BN,CM đồng quy tại 1 điểm