a) Xet tam giac AEB va tam giac AFC co:AE/AF =AB/AC suy za AE/AB=AF/AC(1)
(2) chung goc A
Tu (1) va (2) suy za tam giac AFE~ACB(CGC)
May y cn laj mjnk ngaj nghj. Mong ban thong cam
d) Xet tg BHD ~BCE(gg)=> BH/BC=BD/BE=>BH.BE=BD.BC(1)
Xet tg CHD~CBF(gg) =>CH/CB=CD/CF=>CH.CF=CB.CD(2)
Tu (1) va (2) => BH.BE+CH.CF=BD.BC+BC.CD=>BC(BD=CD)=>BC.BC=BC^2
a) Ta có \(\Delta AEB\sim\Delta AFC\left(g-g\right)\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(g-g\right)\)
b) Ta có \(\Delta ABD\sim\Delta CBF\left(g-g\right)\Rightarrow\widehat{BAD}=\widehat{BCF}\)
\(\Rightarrow\Delta ABD\sim\Delta CHD\left(g-g\right)\Rightarrow\frac{AD}{CD}=\frac{BD}{HD}\)
\(\Rightarrow AD.HD=CD.BD\)
c) Ta có \(\Delta AEH\sim\Delta BDH\left(g-g\right)\Rightarrow\frac{AH}{BH}=\frac{HE}{HD}\Rightarrow AH.HD=HB.HE\)
\(\Delta HDC\sim\Delta HFA\left(g-g\right)\Rightarrow\frac{HD}{HF}=\frac{HC}{HA}\Rightarrow AH.HD=HF.HC\)
\(\Rightarrow AH.HD=BH.HE=CH.HF\)
d) Ta có ngay \(\Delta BDH\sim\Delta BEC\left(g-g\right)\Rightarrow\frac{BD}{BE}=\frac{BH}{BC}\Rightarrow BE.BH=BC.BD\)
Tương tự \(CE.CH=BC.DC\)
\(\Rightarrow BE.BH+CE.CH=BC.BD+BC.DC=BC^2\)