Cho tam giác ABC nhọn (AB>AC) ngoại tiếp đường tròn tâm I. Đường tròn (I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Đường thẳng EF cắt (I) tại N (khác D). Cm MN là tiếp tuyến của đường tròn (I).
Cho tam giác ABC nhọn (AB>AC) ngoại tiếp đường tròn tâm I. Đường tròn (I) tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Đường thẳng EF cắt (I) tại N (khác D). Cm MN là tiếp tuyến của đường tròn (I).
cho tam giác ABC ngoại tiếp đường tròn tâm i gọi D ,E ,F lần lượt là các tiếp điểm của các cạnh BC CA AB với đường tròn tâm i .gọi m là giao điểm của AB và BC, AD cắt đường tròn tâm i tại n .gọi k là giao điểm của AC và EF .a)Chứng minh rằng IKND là tứ giác nội tiếp .b) chứng minh rằng MN là tiếp tuyến của đường tròn tâm I.
Cho tam giác ABC ngoại tiếp đường tròn (I). Các cạnh AB, BC, CA lần lượt tiếp xúc đường tròn (I) tại các tiếp điểm là D, E, F. Qua A kẻ đường thẳng song song với BC, đường thẳng này cắt tia EF tại K.
a) Chứng minh: AD = AK.
b) Qua D kẻ đường thẳng song song với BC, đường thẳng này cắt đoạn thẳng EF ở M. Các đoạn thẳng AE và DM cắt nhau ở N. Chứng minh NM = ND.
Cho tam giác ABC nhọn không cân, D là một điểm nằm trên cạnh BC. Lấy điểm E trên cạnh AB và F trên cạnh AC sao cho ^DEB=^DFC. Các đường thẳng khác DE,DF lần lượt cắt AB,AC tại M và N. Gọi (I1), (I2) lần lượt là đường tròn ngoại tiếp các tam giác DEM; DFN. (J1) là đường tròn tiếp xúc trong với (I1) tại D và tiếp xúc với AB tại K. (J2) là đường tròn tiếp xúc trong với (I2) tại D và tiếp xúc với AC tại H. Gọi P là giao điểm của (I1) và (I2); Q là giao điểm của (J1) và (J2) (P,Q khác D)
a) Chứng minh D,P,Q thẳng hàng ?
b) Đường tròn (AEF) cắt đường tròn (AHK) và đường thẳng HK lần lượt tại G,L. Chứng minh tiếp tuyến tại D của đường tròn (DGQ) cắt đường thẳng EF tại 1 điểm nằm trên đường tròn (DLG) ?
Cho tam giác nhọn ABC ( AB<AC) nội tiếp đường tròn (O). Gọi E là điểm chính giữa của cung nhỏ BC. Trên cạnh AC lấy điểm M sao cho EM=EC, đường thẳng BM cắt đường tròn (O) tại N ( N khác B). Các đường thẳng EA và EN cắt cạnh BC lần lượt tại D và F.
a) Chứng minh tam giác AEN đồng dạng với tam giác FED
b) Chứng minh M là trực tâm của tam giác AEN
c) Gọi I là trung điểm của AN, tia IM cắt đường tròn (O) tại K. Chứng minh đường thẳng CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
cho tam giác abc vuông tại a ab lớn hơn ac nội tiếp đường tròn tâm o đường cao ah gọi d là điểm đối xứng với a qua bc gọi k là hình chiếu vuông góc của a lên bc qua h kẻ đường thẳng song song với bc cắt ac tại i đường thẳng bd cắt đường tròn tâm o tại n (n khác b ) tiếp tuyến của đường tròn o tại d cắt đường thẳng bc tại p . chứng minh đường thẳng bc tiếp xúc với đường tròn ngoại tiếp tam giác anp
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
Cho tam giác ABC, đường tròn tâm I nội tiếp tam giác tiếp xúc với các cạnh AB, AC, BC lần lượt tại D, E và F. DE cắt BC tại P. IF cắt đường tròn đường kính BC tại K.
CMR : PK là tiếp tuyến của đường tròn đường kính BC