cho tam giác nhọn ABC ( AB< AC) nội tiếp đường tròn (O) và có trực tâm H. Ba điểm D,E,F lần lượt là chân các đường cao vẽ từ A,B,C của tam giác ABC. Gọi M là trung điểm của cạnh BC, K là giao điểm của EF và BC. Đường thẳng AK cắt đường tròn tại N
a> Chứng minh tứ giác BFNK nội tiếp đường tròn và HK vuông góc với AM
b> Lấy điểm L trên cung nhỏ BC của đường tròn (O) ( L khác B,L khác C). Goik P là giao điểm của AL và BE, Q là giao điểm của BL và AD. Chứng Minh đường thẳng DE cách đều điểm P và Q