Cho tam giác nhọn ABC ( AB AC < ) nội tiếp đường tròn (O) có tâm là O . Các đường cao BE CF , của tam giác ABC cắt nhau tại H . Đường phân giác ngoài của BHC cắt các cạnh AB AC , lần lượt tại M N, . Đường tròn ngoại tiếp tam giác AMN cắt đường phân giác của BAC tại điểm I khác A IM, cắt BE tại điểm P và IN cắt CF tại điểm Q . 1. Chứng minh tam giác AMN cân tại A . 2. Chứng minh HPIQ là hình bình hành. 3. Chứng minh giao điểm của hai đường thẳng HI và AO thuộc đường tròn (O) .