b/ Xét tứ giác MPND có:
góc NMP =90 độ (do tam giác MNP vuông tại M)(1)
Tam giác NDQ nội tiếp đường tròn đường kính NQ có cạnh NQ là đường kính
=> tam giác NDQ vuông tại D
=> góc QDN =90 độ(2)
Từ (1) và (2)=> góc QDN = gócNMP
=> tứ giác MPND nội tiếp (đpcm)
c/Từ giác MPND nội tiếp (c/m câu b)
=> góc DMN=góc DPN (cùng chắn cungDN) (đpcm)
d/Xét tứ giác MQEP có:
góc QMP=90 độ (do tam giác MNP vuông tại M và M, Q,N thẳng hàng) (3)
Tam giác NQE nội tiếp đường tròn đường kính NQ có cạnh NQ là đường kính
=> tam giác NQE vuông tại E
=> góc NEQ=90 độ
=> góc QEP=90 độ (góc NEQ+góc QEP=90 độ do kề bù) (4)
Từ (3) và (4)=> tứ giác MQEP nội tiếp
=> góc QME=gócQPE
hay góc NME=góc DPN (do D,Q,P thẳng hàng và N,Q,M thẳng hàng) (5)
Mà góc DPN=góc DMN (c/m câu c) (6)
từ (5) và (6)=> góc DMN=góc NME (7)
Mặt khác: tia MN nằm giữa 2 tia MD và ME (8)
Từ (7) và (8)=> MN là đường phân giác của góc DME (đpcm)