cho tam giác MNP vuông góc tại N, NK là đường cao.
a) CM tam giác KNM đồng dạng với tam giác MNP và MN2 =MK.MP
b)CM MK2 =NK.PK
c) vẽ NI là p/ giác góc MNP(\(I\in MP\)) ,vẽ IG vuông góc MP(\(G\in NP\)). CM IG=IM
d) Nếu biết PG=10cm, MP=15cm, diện tích tam giác MNP=90cm2.Tính diện tích tam giác IPG
e)MN cắt IG tại H. CM: NG.NP=NH.NM
cho tam giác MNP vuông tại M . MN = 4cm, MP = 3cm. đường cao MI : a) Cm tam giác MNP và tam giác INM đồng dang => MN mũ 2 = NP . NI; b) tính độ dài NI và IP : c) gọi NE là tia phân giác của góc MNP . K là giao điểm NE và MI. cm EM/EP, NI/MN ; d) kẻ IH vuong góc với MN tại H. tính diện tích tam giác IMH
Cho tam giác MNP vuông tại M (MN<MP). Vẽ đường cao MH(H thuộc NP)
a. Chứng minh tam giác MNP đồng dạng với tam giác HNM
b. Chứng minh MN^2=NH.NP
c. Vẽ tia phân giác MK của góc NMP (K thuộc NP). Biết MN=7,2 cm và MP=9,6 cm. Tính độ dài các đoạn thẳng NP, NH và MK.
cho tam giác MNP có MN = 8 cm B = 16 cm trên cạnh MB lấy điểm E sao cho me = 4 cm đường phân giác MD của tam giác MNP cắt NE tại I (D thuộc NP)
a) Chứng minh tam giác MEN và tam giác MNP đồng dạng
b)cho MP = 20 cm Tính độ dài NE và độ dài DPDN
c)Chứng minh IE.DP= IN.DN
cho tam giác MNP vuông tại M, chiều cao MH ( H€NP) biết MN=3 cm,MP=4 CM, HN=1,8 cm. Tính độ dàp NH,MH,HP
cho tam giác MNP vuông tại M có MN=5,NP=13. Lấy điểm K trong tam giác MNP soa cho tam giác MNK vuông cân tại K. Gọi H là trung điểm của NP. Tính HK. (Gợi ý: NK cắt MP tại I)
Cho tam giác MNP vuông tại M, MN=9cm, MP=12cm. Phân giác của gics M cắt NP tại I.
a) Tính IN, IP
b) Tính diện tích tam giác MNI
cho tam giác MNP vuông tại M dựng hình chữ nhật MPKN.Nếu MN=12cm,NP=13cm.Khi đó diện tích MPKN là
cho tam giác MNP vuông tại N có MN = 6cm, Np = 8 cm. Tia phân giác của góc N cắt Mp tại H. Từ H kẻ He vuông góc với Np ( E thuộc NP)
a) Tính đọ dài MP
b) chứng minh: tam giác MNP đồng dạng với tam giác HEP
c) Tính độ dài HM; HP