cho tam giác MNP vuông tại M . Gọi K là trung điểm của NP, H là điểm đối xứng với K qua MP, I là điểm đối xứng với K qua MN, Q là giao điểm của MN và KI
a) tứ giác MRKQ là hình gì ? Vì sao
b)chứng minh tứ giác IMKN; HMKP là hình thoi
c) tam giác MNP cần có thêm điều kiện gì để tứ giác MRKQ là hình vuông
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. Gọi E là điểm đối xứng của I qua K. Biết MHIK là hình chữ nhật. Chứng minh tứ giác MIPE là hình thoi.
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. E là điểm đối xứng của I qua K. Kẻ đường cao AH. Biết tứ giác MHIK là hình chữ nhật, tứ giác MIPE là hình thoi. Chứng minh tứ giác HAIK là hình thang cân.
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. E là điểm đối xứng của I qua K. Kẻ đường cao AH. Biết tứ giác MHIK là hình chữ nhật, tứ giác MIPE là hình thoi. Chứng minh tứ giác HAIK là hình thang cân.
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. E là điểm đối xứng của I qua K. Kẻ đường cao AH. Biết tứ giác MHIK là hình chữ nhật, tứ giác MIPE là hình thoi. Chứng minh tứ giác HAIK là hình thang cân.
Cho tam giác MNP vuông tại M (MN<MP). Gọi I là trung điểm của NP. Vẽ IH vuông góc với MN tại H, IK vuông góc với MP tại K. E là điểm đối xứng của I qua K. Kẻ đường cao AH. Biết tứ giác MHIK là hình chữ nhật, tứ giác MIPE là hình thoi. Chứng minh tứ giác HAIK là hình thang cân.
Bài 4: Cho tam giác MNP vuông tại M. Gọi A là trung điểm của MP. Gọi Q là điểm đối xứng với N qua A.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Gọi I là điểm đối xứng với N qua M. Chứng minh tứ giác MPQI là hình chữ nhật c) Kéo dài IA cắt NP tại B. Vẽ đường thẳng qua M song song với IA cắt NP tại K. Chứng minh: KP = 2KN
d) Qua N kẻ đường thẳng song song với IA cắt MP kéo dài tại E. Tam giác MNP cần có thêm điều kiện gì để tứ giác AIEN là hình vuông.
Cho tam giác MNP có MI là trung tuyến. K là điểm đối xứng M qua I.
a) Tứ giác MNPK là hình gì ?
b) gọi G là điểm đối xứng M qua NP. Cmr : NGKP là hình thang cân
c) tam giác MNP cần thêm điều kiện gì để tứ giác MNPK là hình chữ nhật ?
d) tam giác MNP cần thêm điều kiện gì để tứ giác MNPK là hình vuông
e) gọi H là trung điểm MP. Khi 3 điểm G,I,H thẳng hàng thì MNGI là hình gì ?
1) Cho tam giác ABC, đường trung tuyến AD. Gọi M là trung điểm của AC,E là điểm đối xứng với D qua điểm M
a) Tứ giác ADCE là hình gì
b) C/m tứ giác AEDB là hình bình hành
c) Gọi K là trung điểm AD. Tính KM biết BC = 4cm
d) Tam giác ABC có điều kiện gì thì tứ giác ADCE là hình chữ nhật
e) Tam giác ABC có điều kiện gì thì tứ giác AEDB là hình chữ nhật
2) Cho tam giác ABC vuông tại A, đường cao AH. Gọi d,E lần lượt là hình chiếu của H trên AB và AC. M là trung điểm của BC
a) Tứ giác ADHE là hình gì ? Tại sao ?
b) Chứng minh góc BAH = góc CAM
c) Gọi I,J lần lượt là trung điểm của BH và CH. Chứng minh tứ giác DIJE là hình thang vuông
d) Tam giác vuông ABC cần có thêm điều kiện gì để tứ giác DIJE là hình chữ nhật