Ta có: ∠P = 180o - 110o - 40o = 30o ⇒ P < N < M
⇒ NM < MP < MP
Chọn A
Ta có: ∠P = 180o - 110o - 40o = 30o ⇒ P < N < M
⇒ NM < MP < MP
Chọn A
. Cho D MNP có M= 300, N= 650. Cạnh lớn nhất của tam giác MNP là
A. MN. B. MP. C. NP. D. Ba cạnh dài bằng nhau.
. Cho D MNP có M= 300, N= 650. Cạnh lớn nhất của tam giác MNP là
A. MN. B. MP. C. NP. D. Ba cạnh dài bằng nhau.
Cho tam giác MNP có I là trung điểm NP. MI là phân giác, G là trọng tâm của tam giác MNP. NK vuông góc với MP tại K. O là giao điểm của NK và MI.
a) Chứng minh tam giác MNP cân tại M
b) NP= 16, MG= 4. Tính MI và MN
c) CO vuông góc với MN
Cho tam giác MNP nhọn có MN < MP. Trên cạnh MP lấy điểm B sao cho MB = MN. Lấy O là trung điểm của NB.
a) Chứng minh: tam giác MNP = tam giác MBO.
b)Kéo dài MO cắt NP tại A. Chứng minh: AN = AB. c)Đường thẳng P song song với MP cắt MO kéo dài tại điểm H, cắt MN kéo dài tại điểm
c) Chứng minh: MH vuông góc CP và MC = MP.
1. Cho tam giác MNP cân tại M vẽ MH thuộc NP (H thuộc NP)
a) Chứng minh NH = PH
b) Cho MH = 4 cm; NH = 3 cm. Tính MN
2. Cho tam giác MNP vuông tại M, có góc N = 60o và MN = 5 cm. Tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với PN tại E
a) Chứng minh: tam giác MNP = tam giác END
b) Chứng minh: tam giác MNE là tam giác đều
c) Tính độ dài cạnh PN
3. Cho tam giác MNP cân tại M, góc M = 30o; NP = 2 cm. Trên cạnh MP lấy điểm Q sao cho góc PNQ = 60o. Tính độ dài MQ
Cho tam giác MNP nhọn có MN < MP. Trên cạnh MP lấy điểm B sao cho MB = MN. Lấy O là trung điểm của NB.
a)Chứng minh: tam giác MNP bằng tam giác MBO.
b)Kéo dài MO cắt NP tại A. Chứng minh: AN = AB.
c)Đường thẳng P song song với MP cắt MO kéo dài tại điểm H, cắt MN kéo dài tại điểm C. Chứng minh: MH vuông góc CP và MC = MP.
d)Chứng minh 3 điểm B, A, C thẳng hàng.
Cho tam giác MNP nhọn có MN < MP. Trên cạnh MP lấy điểm B sao cho MB = MN. Lấy O là trung điểm của NB.
a)Chứng minh: tam giác MNP bằng tam giác MBO.
b)Kéo dài MO cắt NP tại A. Chứng minh: AN = AB.
c)Đường thẳng P song song với MP cắt MO kéo dài tại điểm H, cắt MN kéo dài tại điểm C. Chứng minh: MH vuông góc CP và MC = MP.
d)Chứng minh 3 điểm B, A, C thẳng hàng.
cho tam giác MNP vuông tại M có MN nhỏ hơn MP. Vẽ ME vuông góc với MP(E thuộc NP) K là điểm thuộc cạnh MP sao cho MN=MK. Vẽ K vuông góc NP(L thuộc NP). CMR:MEL là tam giác cân
Tam giác MNP có các cạnh MN, NP, MP lần lượt tỉ lệ với 3; 4; 5 và chu vi của tam giác MNP là 60cm. Số đo các cạnh MN, NP, MP theo thứ tự là
Cho tam giác MNP vuông góc tại M, MN = 4cm, góc N = 60o. Tia phân giác góc N cắt MP tại D. Kẻ DE vuông góc với NP tại E.
a) Chứng minh tam giác END = tam giác MND
b) Chứng minh tam giác MNE đều
c) Tính cạnh NP, MP