Ta có: tam giác MNP cân tại P có một góc M ⏜ = 60 o
Suy ra tam giác MNP đều (dấu hiệu nhận biết tam giác đều)
Chọn đáp án C
Ta có: tam giác MNP cân tại P có một góc M ⏜ = 60 o
Suy ra tam giác MNP đều (dấu hiệu nhận biết tam giác đều)
Chọn đáp án C
Tam giác MNP có MN = NP và góc M bằng 45ᵒ, khi đó kết luận nào sau đây là đúng nhất?
Tam giác MNP vuông tại M
Tam giác MNP đều
Tam giác MNP cân tại N
Tam giác MNP vuông cân tại N
cho tam giác mnp vuông tại m , góc mnp=60 độ , trên cạnh np lấy d sao chonm=nd. từ d kẻ đường thẳng vuông gác vs np ,cắt mp tại a.
a)cmr: nalaf tia phân giác của góc mnp.
b) tam giác nap là tam giác gì? vì sao.
c)tam giác nap cân tại a cà d là tung điểm của np
Cho tam giác MNP vuông tại M có MN = 6 cm ,MP=8cm khi đó NP bằng:
a 🔼MNP vuông tại M b 🔼MNP vuông tại P
c 🔼MNP vuông tại N d 🔼MNP cân tại P
1. Cho tam giác MNP cân tại M vẽ MH thuộc NP (H thuộc NP)
a) Chứng minh NH = PH
b) Cho MH = 4 cm; NH = 3 cm. Tính MN
2. Cho tam giác MNP vuông tại M, có góc N = 60o và MN = 5 cm. Tia phân giác của góc N cắt MP tại D. Kẻ DE vuông góc với PN tại E
a) Chứng minh: tam giác MNP = tam giác END
b) Chứng minh: tam giác MNE là tam giác đều
c) Tính độ dài cạnh PN
3. Cho tam giác MNP cân tại M, góc M = 30o; NP = 2 cm. Trên cạnh MP lấy điểm Q sao cho góc PNQ = 60o. Tính độ dài MQ
Cho tam giác MNp cân tại M. H là trung điểm của NP. HK vuông với MN, HD vuông với MP. I là trung điểm DK. Chứng minh rằng:
a) tam giác MNH = tam giác MPH.
b) MH vuông NP.
c) tam giác HKD cân.
d) KD song song.
e) M,I,H thẳng hàng.
f) Tìm điều kiện tam giác MNP để tam giác KHD vuông cân.
Cho tam giác MNP có I là trung điểm NP. MI là phân giác, G là trọng tâm của tam giác MNP. NK vuông góc với MP tại K. O là giao điểm của NK và MI.
a) Chứng minh tam giác MNP cân tại M
b) NP= 16, MG= 4. Tính MI và MN
c) CO vuông góc với MN
Cho tam giác MNP vuông tại M , góc MNP =60 độ . Trên canh NP lấy D sao cho NM = ND . Từ D kẻ đường thẳng vuông góc vs NP cắt MP tại A
a, CMR : NA là tia phân giác của góc MNP
b, tam giác NMD là tam giác gì ? vì sao
c, CMR : Tam giác NAP cân tại A và D là trung điểm NP
d, Trên tia đối MN lấy B sao cho MB = DP . CMR : tam giác APB cân tại A
e, CMR : D,A,B thẳng hàng
f, CMR : MD // BP
AI LÀM NHANH MÌNH TICK NHA
Cho tam giác MNP cân tại M, MI là đường phân giác (I thuộc NP) a) chứng minh tam giác MIN=tam giác MIP b) kẻ EI vuông góc MN tại E , IF vuông góc MP tại F .chứng minh tam giác MEF cân
cho tam giác MNP cân tại M,gọi I là trung điểm NP
a) chứng minh tam giác MIN= tam giác MIP
b) Vẽ IA vuông góc MN tại A; IB vuông góc MP tại B.Chứng minh tam giác MAB cân tại M
c) Gọi O là trung điểm AB.Chứng minh 3 điểm M,O,I thẳng hàng
Cho tam giác MNP cân tại M có MN=3 cm,góc N =60 độ.Tính độ dài của caec cạnh và số đo các góc còn lại của tam giác MNP.Từ đó CM tam giác MNP là tam giác đều