Bài 5. Cho đường tròn (O) và một điểm M nằm bên ngoài đường tròn. Từ M kẻ hai tiếp tuyến MA, MB (A và B là tiếp điểm) và cát tuyến MNP (N nằm giữa M và P) với đường tròn . Gọi E là trung điểm của NP a) Chứng minh rằng năm điểm M, A, K, O, B cùng nằm trên một đường tròn, từ đó chứng minh KM là tia phân giác của AKB b) Gọi Q là giao điểm thứ hai của đường thẳng BK với đường tròn (O).Chứng minh AQ//NP c) Gọi H là giao điểm của AB và MO. Chứng minh rằng: MH.MO= MB2 ; MH.MO= MN.MP d) Chứng minh tứ giác NHOP nội tiếp e) Gọi E là giao điểm của AB và KO, F là giao điểm của AB và NP. CMR: AB2=4 HE.HF và tứ giác KEMH nội tiếp f) Chứng minh: EN, EP là các tiếp tuyến của (O)
Cho đường tròn (O). Từ điểm M cố định nằm ngoài đường tròn, kẻ các cát tuyến MNP
(N nằm giữa M và P) và hai tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm, A thuộc
nửa mặt phẳng bờ MP chứa điểm O) với đường tròn (O). Gọi I là trung điểm của NP.
a) Chứng minh tứ giác MOIB nội tiếp đường tròn.
b) Chứng minh MB2 = MN. MP
c) Gọi C là giao điểm của BI với đường tròn tâm O. Chứng minh AC // MP
d) Gọi H là giao điểm của MO và AB. Khi cát tuyến MNP thay đổi thì trọng tâm tầm giác ANP chạy trên đường nào?
cho đường tròn tâm (O) và điểm M nằm ngoài (O).Từ M kẻ hai tiếp tuyến MA và MB đến (O) (A,B là tiếp điểm). Qua M kẻ cát tuyến MNP(MN<MP). Gọi k là trung điểm của NP.
1) CMR: các điểm M,A,O,B cùng thuộc 1 đg tròn
2) CM : KM là tia phân giác của góc AKB
3) Gọi Q là giao điểm thứ 2 của BK với (O) CMR: AQ//NP
4) gọi H là giao điểm của AB và MO. CMR: MA^2=MH.MO=MN.MP
5) CM : 4 điểm N,H,O,P cùng thuộc một đg tròn
6) Gọi E là giao điểm của AB và KO, F là giao điểm của AB và NP.CMR: KEMH là tứ giác nội tiếp, từ đó chứng tỏ OK.OE không đổi và EN,EP là các tiếp tuyến của (O)
7) Gọi I là giao điểm của đoạn MO với (O) CMR : I là tâm đg tròn nội tiếp tam giác MAB
bác nào giúp e cái ạ e cảm ơn
Cho đường tròn (O) nội tiếp tam giác ABC, tiếp xúc với MC,CA,AB lần lượt tại D,E,F . gọi M,N,P lần lượt là giao điểm của OA,OB,OC và EF,FD,DE . chứng minh rằng O là trực tâm của tam giác MNP.
Cho tam giác ABC nội tiếp đường tròn (O), góc A < 90°. Các đường phân giác trong cắt nhau tại I. Các đường thẳng AI, BI, CI lần lượt cắt đường tròn tại M, N, P. Chứng minh:
a) Tam giác NIC cân tại N
b) I là trực tâm tam giác MNP
c) Gọi E là giao điểm của MN và AC, F là giao điểm của PM và AB. Chứng minh 3 điểm E, I, F thẳng hàng
d) Gọi K là trung điểm BC, giả sử BI ⊥ IK, BI = 2IK. Tính góc A của tam giác ABC
cho tam giác ABC ngoại tiếp đường tròn tâm i gọi D ,E ,F lần lượt là các tiếp điểm của các cạnh BC CA AB với đường tròn tâm i .gọi m là giao điểm của AB và BC, AD cắt đường tròn tâm i tại n .gọi k là giao điểm của AC và EF .a)Chứng minh rằng IKND là tứ giác nội tiếp .b) chứng minh rằng MN là tiếp tuyến của đường tròn tâm I.
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC
c) Gọi N là giao điểm của AH với đường tròn (O) (N khác A). Gọi D là điểm bất kì trên cung nhỏ NC của đường tròn tâm (O) (D khác N và C). Gọi E là điểm đối xứng với D qua AC, K là giao điểm của AC và HE. Chứng minh rằng ACH = ADK.
Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai tiếp tuyến MA, MB đển (O) (A, B là các tiếp điểm). Qua M kẻ cát tuyên MNP (MN < MP) đến (O). Gọi K là trung điểm của NP
a, Cho đường tròn (O) và điểm M nằm ngoài (O). Từ M kẻ hai
b, Chứng minh tia KM là phân giác của góc A K B ^
c, Gọi Q là giao điểm thứ hai của BK với (O). Chứng minh AQ song song NP
d, Gọi H là giao điểm của AB và MO. Chứng minh: MA2 = MH.MO = MN.MP
e, Chứng minh bốn điểm N, H, O, P cùng thuộc một đường tròn
Cho đường tròn tâm O. ĐƯờng kính AB. C là điểm chính giữa cung AB. Điểm M di động trên cung nhỏ AC(M khác A,C). Dựng hình vuông AMNP, N nằm trên đoạn thẳng MB. Chứng minh:
1 Gọi Q là giao điểm của tia MP với (O), chứng minh Q đối xứng với C qua AB.
2 Gọi I là tâm đường tròn nội tiếp tam giác AMB, chứng minh tứ giác AINB nội tiếp.
3 Khi M chạy trên cung nhỏ AC thì P chạy trên đường nào?
4 Gọi K là giao điểm của NP và BQ. Chứng mình rằng KA là tiếp tuyến của (O).