Cho tam giác đều ABM, ở phía ngoài vẽ tam giác đều AMD, ở phía ngoài tam giác AMD vẽ tam giácđều MDC. Chứng minh rằnga) ABCD là hình thang cân.b) Gọi O là giao điểm của 2 đường chéo AC và BD. Chứng minh rằng BO = 2OD.
o l m . v n
Cho tam giác ABC đều. Vẽ ra phía ngoài tam giác ABM, tg AMD đều. Vẽ ra phía tg AMD, tg MDC đều
a, CM: Tứ giác ABCD là hình thang cân
b, Gọi O là giao điểm của AC và BD. CM: OA=1/3AC, OD=1/3BD
cho tam giác đều ABM ở phía ngoài tam giác dựng tam giác đều AMD.ở phía ngoài tam giác AMD dựng tam giác đều MDC.CHỨNG MINH tứ giác ABCD là hình thang cân, CM BO=2OD
Cho tam giác đều ABM. Ở phía ngoài tam giác dựng tam giác đều ADM. Ở phía ngoài tam giác ADM dựng tam giác đều DMC.
Chứng Minh: giao điểm O của 2 đường chéo AC và BD chia đường chéo theo tỉ số 1:3
Cho tam giác đều ABM. Ở phía ngoài tam giác dựng tam giác đều ADM. Ở phía ngoài tam giác ADM dựng tam giác đều DMC.
Chứng Minh: giao điểm O của 2 đường chéo AC và BD chia đường chéo theo tỉ số 1:3
cho tam giác đều ABM ở phía ngoài tam giác dựng tam giác đều AMD.ở phía ngoài tam giác AMD dựng tam giác đều MDC.CHỨNG MINH tứ giácABCD là hình thang cân
1.cho tam giác ABC có góc A=120 độ. Ở phía ngoài tam giác ABC vẽ tam giác đều BCD. chứng minh rằng : AD= AB+AC.
2.cho hình thang vuông ABCD, AD vuông góc với DC, 2 đường chéo vuông góc với nhau. chứng minh: AD^2 = AB x DC.
Cho tam giac ABC có góc A = 60độ, vẽ ra phía ngoài tam giác đó các tam giác đều ABM, ACN. gọi D là giao của AB và CM, E là giao của AC và BN.
a) chứng minh tam giác ADE đều
b) cho BD=4, CE=9, tính DE
Cho hình bình hành ABCD có O là giao điểm hai đường chéo. Vẽ về phía ngoài của hình bìh hành các tam giác đều ABE và ADF. Gọi M, N lần lượt là trung điểm của AE và AF a) Tính số đó góc ECF b) Chứng minh tam giác MON đều
mọi người giúp em được không ạ