Cho tam giác ABC đều, trọng tâm G, M là 1 điểm bất kì trong tam giác. MG cắt BC,AC,AB ở A', B', C'.
CMR: A'M/A'G+ B'M/B'G+ C'M/C'G= 3
Cho tam giác đều ABC. Trọng tâm G. M là 1 điểm bất kì nằm trong tam giác.Đg thẳng MG cắt BC,AC,AB tại A' ,B', C' CMR: A'M/A'G + B'M/ B'G+ C'M/C"G=3
Giúp mk với m.n ^^
cho tam giác ABC đều. Gọi G là trọng tâm. Olaf 1 điểm nằm trong tam giác(O\(\ne\)G) Đường thẳng OG cắt BC,AB,AC tại A',B',C'
tính \(\frac{A'O}{A'G}+\frac{B'O}{B'G}+\frac{C'O}{C'G}\)
cho tam giác ABC đều gọi G là trọng tâm ,O là 1 điểm trong tam giác(O\(\ne\)G) đường thẳng CG cắt BC,ABvafAC tại A',B',C'.
Tính A'O/A'G+B'O/B'G+C'O/C'G
( gợi ý CM :A'O/A'G+B'O/B'G+C'O/C'G =3 )
cho tam giác ABC đều gọi G là trọng tâm ,O là 1 điểm trong tam giác(O\(\ne\)G) đường thẳng CG cắt BC,ABvafAC tại A',B',C'.
Tính A'O/A'G+B'O/B'G+C'O/C'G
1a/ Cho tam giác đều ABC, trọng tâm G. O là một điểm thuộc miền trong tam giác và O khác G. Đường thẳng OG cắt các đường thẳng BC,BA và AC theo thứ tự ở A',B',C'. Chứng minh rằng \(\frac{OA'}{GA'}+\frac{OB'}{GB'}+\frac{OC'}{GC'}=3\)
b/ Từ một điểm P thuộc miền trong của tam giác đều ABC. Hạ các đường vuông góc PD,PE và PF xuống các cạnh BC,CA và AB. Tính \(\frac{PD+PE+PF}{BD+CE+AF}\)
Cho tam giác đều ABC. trọng tâm G và o là một điểm bất kì trong tam giá. Một đường thẳng qua O và G cắt BC, AC, AB theo thứ tự M, N, P. Chứng minh MO/MG+NO/NG+PO/PG=3
Bài 1: Tam giác ABC, G là trọng tâm. d là một đường thẳng qua G cắt cạnh AB, AC theo thứ tự tại M và N. Chứng minh rằng \(\frac{AB}{AM}+\frac{AC}{AN}=3\)
Bài 2: Cho tam giác ABC, đường cao AA'. Biết BC = a, AA' = h. M là điểm bất kì trên đường cao AA', gọi AM = x. Qua M vẽ đường thẳng song song BC cắt AB và AC tại P và Q. Hạ PS và QR vuông góc với BC. Tính diện tích PQRS theo a, h, x. Tìm vị trí M trên AA' để diện tích PQRS đạt GTLN
Ai nhanh và đúng thì mình sẽ tick và add friends nhé. Thanks. Please help me!!! PLEASE!!!
Bài 1:
Cho tam giác ABC, G là trọng tâm của tam giác. Qua G kẻ đường thẳng d cắt AB, AC lần lượt tại P,Q. Chứng minh rằng đẳng thức \(\frac{BP}{AP}+\frac{CQ}{AQ}\)không phụ thuộc vào vị trí đường thẳng d.
Bài 2: Trên trung tuyến AD của tam giác ABC lấy điểm M. Qua M kẻ đường thẳng bất kì cắt các cạnh AB và AC lần lượt tại P và Q. Chứng minh rằng: \(\frac{AB}{AP}+\frac{AC}{AQ}=2.\frac{AD}{AM}\)
(Có lời giải nhé cảm ơn mọi người, ai giải đủ mình tích cho, hứa đấy)