Cho tam giác đều ABC, trên cạnh BC lấy điểm E, qua E kẻ các đường thẳng song song với AB và AC chúng cắt AC tại P và cắt AB tại Q
1) Xác định vị trí của E trên cạnh BC để đoạn PQ ngắn nhất.
2) Gọi H là một điểm nằm trong tam giác ABC sao cho HB^2=HA^2+HC^2. Tính góc AHC
Cho tam giác \(ABC\). Từ điểm \(M\) thuộc cạnh \(AC\) kẻ các đường thẳng song song với các cạnh \(AB\) và \(BC\) cắt \(BC\) tại \(E\) và \(AB\) tại \(F\). Hãy xác định vị trí của \(M\) trên \(AC\) sao cho hình bình hành \(BEMF\) có diện tích lớn nhất.
Cho tam giác ABC có BC là cạnh dài nhất. Trên cạnh BC lấy 2 điểm D và E sao cho BD=BA, CE=CA, đường thẳng qua D song song với AB cắt AC tại M. Đường thẳng qua E song song với AC cắt AB tại N.C/m AM=AN
1) Cho hình bình hành ABCD. ĐƯờng tròn ngoại tiếp tam giác BCD cắt đường chéo Ac tại M. CMR BD là tiếp tuyến của 2 dường tròn ngoại tiếp tam giác AMB và AMD
2) Cho tam giác ABC đều. Từ 1 điểm M trên cạnh AB vẽ 2 đường thẳng song song với 2 cạnh AC, BC,lần lượt cắt BC và AC tại D và E. TÌm vị trí của M trên cạnh AB để chiều dài đoạn DE đạt GTNN
1,Cho tam giác ABC. Trên cạnh AC lấy điểm E cố định , trên cạnh BC lấy điểm F cố định ( E khác A và C; F khác B và C). Trên cạnh AB lấy điểm D di động ( D khác A và B) . Hãy xác định vị trí điểm D trên đường thẳng AB sao cho DE^2+DF^2 có giá trị nhỏ nhất.
2,Cho tam giác ABC vuông tại A có đường cao AH. Gọi I là tâm đg tròn nội tiếp tam giác, E,F,D lần lượt là hình chiếu của I trên AC, AB,BC.Gọi M là trung điểm AC.MI cắt AB tại N.FD cắt AH tại P. Chứng minh AN=AP
Cho tam giác ABC và một điểm D trên cạnh AB. Đường thẳng qua D song song với BC cắt AC ở E và cắt đường thẳng qua C song song với AB tại một điểm G. Nối BG cắt AC ở H. Qua H kẻ đường thẳng song song với AB cắt BC tại I. Chứng minh rằng:
a/ DA.EG = DB.DE b/ HC2 = HE.HA
Bài 1: Cho tam giác ABC, kẻ AH vuông góc với BC, BH=9cm, HC=16cm, tgC=0,75.Trên AH lấy điểm O sao cho OH=2cm
a) CM: ABC là tam giác vuông
b) Trên cạnh AB lấy điểm M, trên OB lấy điểm P và trên OC lấy điểm N sao cho AM/AB=OP/OB=ON/OC=2/5. Tính độ dài các cạnh và số đo các góc của tam giác MPN
Bài 2:Cho tam giác vuông ABC( A=90 độ) Kẻ đường thẳng song song với cạnh BC cắt ccs cạnh AB,AC tại M,N, MB=12cm, NC=9cm, trung điểm của MN và BC là E và F
a) CM: 3 điểm A,E,F thẳng hàng
b) Trung điểm BN là G. Tính độ dài các cạnh và số đo các góc của tam giác EFG
c) CM: Tam giác EFG đồng dạng tam giác ABC
Bài 3: Cho tam giác ABC, A= 90 độ. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC. Nối AF và BE
a) CM; AF= BE.cos C
b) Biết BC=10cm, sinC=0,6. Tính diện tích tứ giác ABFE
c) AF và BE cắt nhau tại O. Tính SinAOB
Bạn nào giúp mk với ạ huhu cảm ơn nhiều nhiều
1) Cho đường tròn (O) đường kính AB = 2R. Lấy điểm C di động trên đường tròn (O), gọi I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc AB tại H.
a) Vẽ CM song song BI ( M thuôc đường thẳng AI). Trên đoạn thẳng AB lấy điểm F sao cho AC = AF. Tính số đo góc CMF.
b) Gọi K là tâm đường tròn nội tiếp tam giác CHA, CK cắt AB tại E. Tính giá trị lớn nhất của diện tích tam giác CEF theo R khi C di động trên (O).
c) Chứng minh ba đường thẳng MH, CF và BI đồng qui tại một điểm.
2) Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O;R). Gọi M là điểm di động trên cung nhỏ BC. Vẽ AD vuông góc với MB tại D, AE vuông góc với MC tại E. Gọi H là giao điểm của DE và BC.
a) Chứng minh A, H,E cùng thuộc một đường tròn. Từ đó suy ra DE luôn đi qua một điểm cố định.
b) Xác định vị trí của M để MB/AD×MC/AE đạt giá trị lớn nhất.
Mọi người giúp em với ạ.
Cho tam giác ABC. Trên cạnh BC lấy điểm M bất kì. Trên đoạn AM lấy điểm K bất kì. Đường thẳng BK và CK cắt cạnh AC và AB lần lượt tại N và P. Qua K kẻ đường thẳng song song với BC cắt MP và MN tại E và F. CMR: I là trung điểm EF.