Cho tam giác ABC đều. Trên Các đoạn AB, BC, AC lần lượt lấy các điểm M,N,P Sao cho AM=BN=CP.
a, CMR: Tam giác MNP đều
b, có O-giao điểm các đường trung trực của tam giác ABC. CMR: O- giao điểm các đường trun trực tam giác MNP.
Cho tam giác ABC đều.
M, N, P lần lượt là các điểm nằm trên AB, BC, CA sao cho AM=BN=CP
a) Chứng minh tam giác MNP đều
b) O là giao điểm các đường trung trực của tam giác ABC. Chứng minh O cũng là giao điểm các đường trung trực của tam giác MNP.
Cho tam giác đều ABC trên các cạnh AB, BC, CA theo thứ tự lấy 3 điểm M, N, P sao cho AM=BN=CP.
a) Chứng minh tam giác MNP là tam giác đều.
b) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng OM=ON=OP từ đó suy ra O là giao điểm các đường trung trực của tam giác MNP
1.cho tam giác ABC.Trên các cạnh ab,bc,ca lấy theo thứ tự 3 điểm m,n,p sao cho am=bn=cp
a, gọi o là giao điểm các đường trung trực của tam giác ABC. CMR 0 cx là đường trung trực của tam giác MNP
2.
Cho∆ ABC.Gọi O là giao điểm của các đg p/g của tam giác ABC, từ O kẻ OD,OE,OF lần lượt vuông góc với BC,CA,AB.Trên tia đối của tia AC,BA,CB lấy M,N,P sao cho AM= BC,BN= AC,CP=AB,cmr
a,EM= FN=DP
b,O là giao điểm của các đg trung trực của tam giác MNP
Trên ba cạnh AB, BC và CA của tam giác đều ABC lấy các điểm theo thứ tự M, N, P sao cho AM = BN = CP. Gọi O là giao điểm ba đường trung trực của tam giác ABC.
a) Tính số đo góc M A O ^ .
b) Chứng minh ∆ M A O = ∆ O P C .
c) Chứng minh O là giao điểm ba đường trung trực của tam giác MNP.
Mn giúp mk bài này vs ạ
Bài toán 1: Cho tam giác ABC cân tại A, trung tuyến AM. Đường trung trực của AB cắt AM ở O. Chứng minh rằng điểm 0 cách đều 3 đỉnh của tam giác ABC.
Bài toán 2: Cho tam giác cân ABC (AB = AC). Đường trung trực của AC cắt AB ở D. Biết CD là tia phân giác của góc ACB. Tính các góc của tam giác ABC.
Bài toán 3: Cho tam giác đều ABC. Trên các cạnh AB, BC, CA lấy theo thứ tự ba điểm M, N, P sao cho AM = BN = CP.
a) Chứng minh tam giác MNP là tam giác đều b) Gọi O là giao điểm các đường trung trực của tam giác ABC. Chứng minh rằng 0 cũng là
giao điểm của các đường trung trực của tam giác MNP.
Trên ba cạnh AB; AC: BC của tam giác đều ABC . Lấy các điểm theo thứ tự M; N; P sao cho AM = BN = CP. Gọi O là giao điểm 3 đường trung trực của \(\Delta ABC\). C/minh O cũng là giao điểm ba đường trung trực của \(\Delta MNP\).
1. Cho tam giác ABC, trung tuyến AM. Kẻ BH, CK vuông góc với AM. Gọi E là trung điểm của BK, F là trung điểm của CH. CMR tam giác AEF cân
2. Cho tam giác ABC cân tại A( góc A nhỏ hơn 45 độ), lấy M thuộc BC. Từ M kẻ MH song song AB(H thuộc AB) , kẻ MI song song AC( I thuộc AC). Lấy N sao cho HI là trung trực của MN. Gọi giao điểm của NH và AB là D. CMR: chu vi tam giác ADH không phụ thuộc vào vị trí điểm M
3. Cho tam giác ABC, trung tuyến AM. Trên tia AM lấy điểm N sao cho MN=AM. Dựng ra ngoài tam giác ABC các tam giác ABD và tam giác ACE vuông cân tại A.
A, CMR: BE vuông góc CD
B, CMR: AN= DE và AN vuông góc với DE