Cho tam giác đều ABC cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(|2\overrightarrow{MA}+3\overrightarrow{MB}+4\overrightarrow{MC}|=\overrightarrow{AB}\)
là đường tròn cố định có bán kính R. Tính bán kính R theo a
cho tam giác ABC tìm tập hợp các điểm M thỏa mãn \(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)
Cho tam giác ABC và điểm M thỏa mãn
\(\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}-3\overrightarrow{MC}\right|\)
Tìm Tập hợp điểm M?
Cho tam giác ABC. Tìm tập hợp tất cả điểm M thỏa mãn điều kiện \(\overrightarrow{MA}+\overrightarrow{MB}-\overrightarrow{MC}=\overrightarrow{0}\)
Tìm tập hợp các điểm M thỏa mãn \(\overrightarrow{MB}\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)=0\) với A,B,C là 3 đỉnh của tam giác
Cho tam giác ABC tìm M thỏa mãn:\(2\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\right|\)
Cho tam giác ABC. Tìm quỹ tích điểm M thỏa mãn \(\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=3\left|\overrightarrow{MB}-\overrightarrow{MC}\right|\)
Cho tam giác ABC, tìm tập hợp điểm M thoả mãn hệ thức:
(\(\overrightarrow{MA}+2\overrightarrow{MB}\)) (\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\))=0
Cho tam giác ABC và điểm M thỏa \(2|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|=3|\overrightarrow{MB}+\overrightarrow{MC}|\)