Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Minh Hiếu

Cho tam giác CBN cân tại C có CA là đường cao, CA=15cm, BC=25cm                         

a)Tính AB và so sánh các góc trong tam giác ABC.

b)Gọi H là trung điểm AC, tại H vẽ đường vuông góc với AC, cắt BC tại E. C/m tam giác EHA=tam giác EHC và tam giác ABE cân tại A.

C)Gọi F là trung điểm NC, BF cắt AC tại G. C/m G là trọng tâm tam giác BCN và tính AG.

d)C/m E,H,F thẳng hàng.

Ai làm trước mih tck cho :))

 

Cô Hoàng Huyền
23 tháng 4 2018 lúc 10:21

a) Áp dụng định lý Pitago trong tam giác vuông ABC, ta có: 

 BC2 = AC2 + AB2

252 = 152 + AB2 \(\Rightarrow ab=20\left(cm\right)\)

Xét tam giác ABC có:

  AC < AB < BC nên \(\widehat{CBA}< \widehat{BCA}< \widehat{BAC}.\)

b)  Xét tam giác vuông EHA và tam giác vuông EHC có:

Cạnh EH chung

HC = HA

\(\Rightarrow\Delta EHC=\Delta EHA\)  (Hai cạnh góc vuông)

Do \(\Delta EHC=\Delta EHA\Rightarrow\widehat{ECA}=\widehat{EAC}\)

\(\Rightarrow\widehat{EBA}=\widehat{EAB}\)    (Cùng phụ với hai góc bên trên)

Vậy nên tam giác EAB cân tại E.

c) Tam giác CBN cân tại C có CA là đường cao nên CA đồng thời là trung tuyến. 

Xét tam giác CBN có CA và BF là các đường trung tuyến mà CA giao BF tại G nên G là trọng tâm tam giác.

Theo tính chất trọng tâm ta có:

\(\frac{AG}{AC}=\frac{1}{3}\Rightarrow AG=\frac{1}{5}.15=5\left(cm\right)\)

d) Xét tam giác CBN cân tại C có CA là đường cao nên đồng thời là phân giác.

Gọi giao điểm của EH với CN là F'. Khi đó ta có \(\Delta ECH=\Delta F'CH\)   (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow CE=CF'\)

Lại có \(CE=\frac{1}{2}BC=\frac{1}{2}CN\Rightarrow CF'=\frac{1}{2}CN\)

Suy ra F' là trung điểm CN hay F' trùng F.

Vậy nên E, H, FA thẳng hàng.

TAKASA
17 tháng 8 2018 lúc 19:59

Bài giải : 

a) Áp dụng định lý Pitago trong tam giác vuông ABC, ta có: 

 BC2 = AC2 + AB2

252 = 152 + AB2 ⇒ab=20(cm)

Xét tam giác ABC có:

  AC < AB < BC nên ^CBA<^BCA<^BAC.

b)  Xét tam giác vuông EHA và tam giác vuông EHC có:

Cạnh EH chung

HC = HA

⇒ΔEHC=ΔEHA  (Hai cạnh góc vuông)

Do ΔEHC=ΔEHA⇒^ECA=^EAC

⇒^EBA=^EAB    (Cùng phụ với hai góc bên trên)

Vậy nên tam giác EAB cân tại E.

c) Tam giác CBN cân tại C có CA là đường cao nên CA đồng thời là trung tuyến. 

Xét tam giác CBN có CA và BF là các đường trung tuyến mà CA giao BF tại G nên G là trọng tâm tam giác.

Theo tính chất trọng tâm ta có:

AGAC =13 ⇒AG=15 .15=5(cm)

d) Xét tam giác CBN cân tại C có CA là đường cao nên đồng thời là phân giác.

Gọi giao điểm của EH với CN là F'. Khi đó ta có ΔECH=ΔF'CH   (Cạnh góc vuông và góc nhọn kề)

⇒CE=CF'

Lại có CE=12 BC=12 CN⇒CF'=12 CN

Suy ra F' là trung điểm CN hay F' trùng F.

Vậy nên E, H, FA thẳng hàng.


Các câu hỏi tương tự
Điền Nguyễn Vy Anh
Xem chi tiết
Phạm Minh Hiếu
Xem chi tiết
Uchiha Sasuke
Xem chi tiết
zy sociu 2003
Xem chi tiết
Bang Le
Xem chi tiết
Nguyễn Trang Nhung
Xem chi tiết
Nguyễn Quốc Khánh
Xem chi tiết
Yukino Tukinoshita
Xem chi tiết
nguyen thi mai trang
Xem chi tiết