a) Xét ΔBKC vuông tại K và ΔCHB vuông tại H có
BC chung
\(\widehat{KBC}=\widehat{HCB}\)(ΔABC cân tại A)
Do đó: ΔBKC=ΔCHB(cạnh huyền-góc nhọn)
Suy ra: BK=CH(hai cạnh tương ứng)
b) Xét ΔAIC vuông tại I và ΔBHC vuông tại H có
\(\widehat{BCH}\) chung
Do đó: ΔAIC\(\sim\)ΔBHC(g-g)
Suy ra: \(\dfrac{CA}{CB}=\dfrac{CI}{CH}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CA\cdot CH=CB\cdot CI\)(đpcm)
c) Ta có: BK=HC(cmt)
AB=AC(ΔABC cân tại A)
Do đó: \(\dfrac{BK}{AB}=\dfrac{CH}{AC}\)
Xét ΔABC có
K\(\in\)AB(gt)
H\(\in\)AC(gt)
\(\dfrac{BK}{AB}=\dfrac{CH}{AC}\)(cmt)
Do đó: KH//BC(Định lí Ta lét đảo)