Tam giác đồng dạng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
My My

Cho tam giác ABC có Â = 90°, AB = 3cm và AC = 4 cm . Đường cao AH (H thuộc BC) a, chứng minh tam giác ABC đồng dạng tam giác HAC b, chứng minh AC² = BC.HC c,Tia phân giác góc A cắt BC tại D. Tính độ dài các đoạn thẳng BC , DB

Nguyễn Lê Phước Thịnh
10 tháng 5 2022 lúc 19:00

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

Do đó: ΔABC\(\sim\)ΔHAC

b: Ta có: ΔABC\(\sim\)ΔHAC

nên AC/HC=BC/AC

hay \(AC^2=BC\cdot HC\)

c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

pourquoi:)
10 tháng 5 2022 lúc 19:04

a, Xét Δ ABC và Δ HAC, có :

\(\widehat{ACB}=\widehat{HCA}\) (góc chung)

\(\widehat{BAC}=\widehat{AHC}=90^o\)

=> Δ ABC ∾ Δ HAC (g.g)

b, Ta có : Δ ABC ∾ Δ HAC (cmt)

=> \(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

=> \(AC^2=BC.HC\)

c, Xét Δ ABC, có :

\(BC^2=AB^2+AC^2\) (định lí Py - ta - go)

=> \(BC^2=3^2+4^2\)

=> \(BC^2=25\)

=> \(BC=5\left(cm\right)\)