chịu thôi em vừa học có lớp 5
Gọi giao điểm AG với BC là M
Qua B và C kẻ đường thẳng song song với EF cắt AM tại T và V
Áp dụng định lý Thales ta có:\(\frac{BE}{AE}=\frac{TG}{AG};\frac{CF}{AF}=\frac{VG}{AG}\)
Ta có:\(\frac{BE}{AE}+\frac{CF}{AF}=\frac{TG}{AG}+\frac{VG}{AG}=\frac{TG+VG}{AG}=\frac{TG+TG+TM+MV}{AG}\)
Dễ chứng minh \(\Delta\)BTM = \(\Delta\)CVM (g.c.g) nên MT=MV
Khi đó:\(\frac{BE}{AE}+\frac{CF}{AF}=\frac{2TG+2TM}{AG}=\frac{2\left(TG+TM\right)}{AG}=\frac{2GM}{AG}=1\)
=> ĐPCM