a, Ta có: \(\widehat{B_2}=\frac{1}{2}\widehat{B};\widehat{C_2}=\frac{1}{2}\widehat{C}\)
XÉt \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}\)
Xét \(\Delta BOC\) có: \(\widehat{BOC}+\widehat{B_2}+\widehat{C_2}=180^o\)
\(\Rightarrow\widehat{BOC}=180^o-\left(\widehat{B_2}+\widehat{C_2}\right)=180^o-\frac{\widehat{B}+\widehat{C}}{2}=180^o-\frac{180^o-\widehat{A}}{2}=90^o+\frac{\widehat{A}}{2}\)
\(\Rightarrow\widehat{BOC}\) là góc tù
=> BC là cạnh lớn nhất
b, Xét \(\Delta BOC\) có OB < OC (gt)
\(\Rightarrow\widehat{BCO}< \widehat{CBO}\)
\(\Rightarrow\widehat{ACB}< \widehat{ABC}\)
=> AB < AC