cho tam giác ABC, M,N,P thuộc BC,CA,AB sao cho: \(\frac{BM}{BC}=\frac{CN}{CA}=\frac{AP}{AB}\) và \(\frac{BM}{BC}<\frac{1}{2}\)
CMR: tam giác ABC và MNP có cùng trọng tâm
Cho tam giác ABC, ba điểm M, N, P lần lượt thuộc BC, CA, AB sao cho BM/BC = CN/CA = AP/AB và BM/BC < 1/2. Chứng minh tam giác ABC và MNP có cùng trọng tâm
Cho tam giác ABC với ba điểm M,N,P lần lượt thuộc các cạnh BC,CA,AB sao cho BM/BC=CN/CA=AP/AB và BM/BC < 1/2. Chứng minh rằng hai tam giác ABC và tam giác MNP có cùng trọng tâm
Cho tam giác ABC với ba điểm M,N,P lần lượt thuộc các cạnh BC,CA,AB sao cho BM/BC=CN/CA=AP/AB và BM/BC < 1/2. Chứng minh rằng hai tam giác ABC và tam giác MNP có cùng trọng tâm
Cho tam giác ABC ba điểm M,N,P lần lượt thuộc AB,BC,AC Sao cho BM/BC=CN/CA=AP/AB và BM/BC<1/2 Chứng minh rằng hai tam giác ABC và MNP có cùng trọng tâm
Cho tam giac ABC ban điểm M,N,P lần lượt thuộc các cạnh BC,CA,ABsao cho \(\frac{BM}{BC}\)\(=\frac{CN}{CA}\)\(=\frac{AP}{AB}\)và BM/BC >1/2. CMR Hai tam giác ABC va MNPcos cùng tronh tâm
Cho tam giác ABC. Trên các tia BC, CA, AB ta lần lượt đặt các đoạn thẳng BM=2BC, CN=2CA, AP=2AB. Chứng minh rằng: hai tam giác ABCD và tam giác MNP có cùng trọng tâm.
Cho AI, BM, CN là các đường phân giác của tam giác ABC ( I, M, N lần lượt thuộc các cạnh BC, AC, AB) . C/m
\(\frac{1}{AI^2}+\frac{1}{BM^2}+\frac{1}{CN^2}>\frac{2}{AB+AC+BC}.\left(\frac{1}{AB}+\frac{1}{AC}+\frac{1}{BC}\right)\)
Bài 2: Cho tam giác ABC, trên tia đối của các tia BA, CB, AC lấy M, N, P sao cho BM =
BA, CN = CB, AP = AC. Chứng minh SMNP = 7SABC .
Bài 3: Cho tam giác ABC. Lấy điểm M, N, P lần lượt thuộc cạnh AC, AB, BC sao cho \(\frac{CM}{AC}=\frac{BF}{BC}=\frac{AN}{AB}=\frac{1}{3}\)
Gọi I là giao điểm của BM, CN. Gọi E là giao điểm của CN,
AP. Gọi F là giao điểm của AP, BM. Chứng minh : SEIF = SIMC + SFBP + SNEA
Bài 3 :Cho tam giác ABC. M, N tương ứng là trung điểm của các đoạn CA ; CB. I là
điểm bất kì trên đường thẳng MN( \(I\ne M,I\ne N\). )Chứng minh rằng trong ba tam giác
IBC, ICA, IAB có một tam giác mà diện tích của nó bằng tổng các diện tích của hai
tam giác còn lại.