Cho tam giác ABC có trọng tâm G . các điểm D,E,F lần lượt là trung điểm của BC,CA,AB.và I là giao điểm của AD và EF . hãy phân tích các vecto AI,AG,DE,DC theo hai vecto AE ,AF
Cho tam giác ABC. E là trung điểm BC, M,N lần lượt thuộc đoạn BC sao cho E là trung điểm của MN. Chứng minh vecto AB+ vecto AC= ecto AM+ vecto AN
cho tam giác ABC , I và J lần lượt là trung điểm của AB và AC . chứng minh rằng vecto IJ=1/2 vecto BC
Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm của BC, AC, AB. D là trung điểm của AM. Chứng minh rằng:
a, vecto AB+ vecto AC+ vecto MN+ vecto MP = vecto 0
b, vecto NB+ vecto NC - 2.vecto AN= 4.vecto ND
Cho tam giác ABC . Gọi M , N , P là 3 điểm thoả mãn vecto MC = 1/3 vecto MB , vecto NA + 3 vecto NC = 0 , vecto PA + vecto PB = 0 a ) Biểu diễn vecto MP , vecto NP theo hai vecto AB và AC b ) Chứng minh 3 điểm M , N, P thẳng hàng
Cho tam giác ABC gọi G là trọng tâm, M là trung điểm BC. PQ là đường trung bình của tam giác ABC. Lấy điểm I bấc kì nằm trên PQ.
Biểu diễn vecto IM theo 2 vecto BI và vecto IC.
Mình không vẽ hình được, có ai tốt bụng thì vẽ hộ luôn được không. Cảm ơn trước ạ!
Cho tam giác ABC Gọi M là trung điểm của AB có G là trọng tâm,I là trung điểm của AB ,M thuộc AB sao cho vtMA+3vtMB=vt0.
a) Phân tích vecto MG theo hai vecto MC và MB.
Cho tam giác ABC. Gọi A’,B’, C’ lần lượt là trung điểm của BC, CA, AB. a) Chứng minh vecto AA’+ vecto BB’+ vecto CC’ = vecto 0 b) Đặt vecto BB’ = vecto u, CC’ = v. Tính vecto BC, CA, AB theo vecto u và v
Cho tam giác ABC có trọng tâm G Gọi I và J lần lượt là hai điểm thỏa mãn vectơ IB = vectơ BA , vecto JA= -2/3 vecto JC .
a)CM: vecto IJ=2/5 vecto AC - 2 vecto AB
b) tính vecto IG theo vecto AB và vecto AC