1) Cho tam giác ABC, điểm I thuộc đường trung tuyến AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. G là trung điểm BF, H là trung điểm CE. CMR: EF//BC
2) Cho hình thang ABCD (AB//CD) có AB=12, CD=15. Gọi M là trung điểm AB, E là giao điểm CM và AD, F là giao điểm của DM và BC. Tính độ dài EF
3) Cho hình bình hành ABCD, E thuộc AD, F thuộc AB, I thuộc AC. Gọi M là giao điểm FI và CD, K là giao điểm EI và BC. CMR: MK//EF
4) Cho tam giác ABC, AB=10, AC=15, 1 đường thẳng đi qua điểm M thuộc cạnh AB và song song với BC cắt AC ở N sao cho AN=BM. Tính độ dài AM sao cho AM=BN
5) Cho tam giác ABC có AB<AC, đường phân giác AD, lấy I thuộc BC sao cho BI=2 IC. Qua I kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. CM BK= 2 CE
cho tam giác abc có trung tuyến am , i là một điểm thuộc đoạn thẳng am bi cắt ac ở d a, nếu ad=1/2dc khi đó hãy chứng minh i là trung điểm của am b, nếu i là trung điểm của am khi đó cm ad = 1/2 dc id = 1/4 bd c, nếu ad = 1/2 dc lhi đó trên cạnh ab ấy điểm e sao cho ab =3ae chứng minh bd, ce, am đồng quy
Cho tam giác ABC có trung tuyến AM, I là một điểm thuộc đoạn thẳng AM,BI cắt AC ở D.Nếu AD= 1/2 DC. Khi đó trên cạnh AB lấy điểm E sao cho AB=3AE. Chứng minh BD,CE,AM đồng quy
1)Cho hình chữ nhật ABCD, AH vuông góc với AC, M là trung điểm AH, Q là trung điểm CD. Chứng minh BM=MQ.
2)Tam giác AVC đều, trực tâm H, đừng cao AD, M thuộc BC, ME vuông góc với AB, MF vuông góc với AC, I là trung điểm AM. Chứng minh DEIF là hình thoi
3) Tam giác ABC, D là trung điểm AB. E, F thuộc BC, BE=EF=FC, G thuộc tia đối AB, BG=BD. Chứng minh AF, CD, GE đồng quy.
1)Cho hình chữ nhật ABCD, AH vuông góc với AC, M là trung điểm AH, Q là trung điểm CD. Chứng minh BM=MQ.
2)Tam giác AVC đều, trực tâm H, đừng cao AD, M thuộc BC, ME vuông góc với AB, MF vuông góc với AC, I là trung điểm AM. Chứng minh DEIF là hình thoi
3) Tam giác ABC, D là trung điểm AB. E, F thuộc BC, BE=EF=FC, G thuộc tia đối AB, BG=BD. Chứng minh AF, CD, GE đồng quy.
Cho tam giác ABC có AM là trung tuyến . N là điểm thuộc AB , P là điểm thuộc AC sao cho NP // BC . Gọi I là giao điểm của NP và AM . CM I là trung điểm của NP.
N là trung điểm AC của tam giác ABC.M thuộc BC sao cho BM=1/10BC; MN cắt AB ở I. tìm tỉ so IB/IN
Cho tam giác ABC, M thuộc AB, N thuộc AC. Biết AM = 3cm, BM = 2cm, AN = 7,5cm, NC = 5cm
a) Chứng minh MN // BC
b) Gọi I là trung điểm của BC, AI cắt MN tại K. Chứng minh K là trung điểm MN
c) Gọi O là giao điểm của BN và CM. Chứng minh A, O, I thẳng hàng
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM