a/ \(S_{IBC}=\frac{1}{2}.BC.IH=\frac{1}{2}.a.r\)
b/
Từ I hạ IK vuông góc với AC tại K và IE vuông góc với AB tại E
Xét tam giác vuông BIH và tam giác vuông BIE có
Cạnh huyền BI chung
^HBI=^EBI (BI là phân giác ^ABC)
=> tam giác BHI = tam giác BEI (hai tam giác vuông có cạnh huyền và góc nhon tương ứng bằng nhau)
=> IH=IE (1)
Xét tam giác vuông CHI và tam giác vuông CKI, chứng minh tương tự => IH=IK (2)
Từ (1) và (2) => IH=IE=IK=r
=> \(S_{ABC}=S_{IBC}+S_{IAC}+S_{IAB}=\frac{1}{2}.BC.IH+\frac{1}{2}.AC.IK+\frac{1}{2}.AB.IE\)
\(S_{ABC}=\frac{1}{2}.a.r+\frac{1}{2}.b.r+\frac{1}{2}.c.r=\frac{a+b+c}{2}.r\)