Cho tam giac ABC. I là một điểm trong tam giác. IA, IB, IC theo thứ tự cắt BC, CA, AB tại M, N, P
CMR:\(\frac{MB}{MC}\cdot\frac{NC}{NA}\cdot\frac{PA}{PB}=1\)
Cho tam giác ABC, điểm I thuộc miền trong tam giác, IA,IB,IC cắt BC,CA,AB lần lượt tại M,N,P. CMR: AC/NC+AB/PB=2+IA/IM
Cho tam giac ABC. I là một điểm trong tam giác. IA, IB, IC theo thứ tự cắt BC, CA, AB tại M, N, P.
CMR: \(\dfrac{IA}{IM}=\dfrac{NA}{NC}+\dfrac{PA}{PB}\)
Cho tam giác ABC một điểm I nằm trong tam giác , IA, IB, IC theo thứ tự cắt BC,CA,AB tại M,N,P. Qua A kẻ đường thẳng // với BC đường thẳng này cắt BN tại E , cắt CD tại F .cm NA/NC + PAPB = IA/IM
cho tam giác abc. 1 đường thẳng d không song song với bất kì cạnh nào của tam giác cắt bc tại m, cắt ac tại n, cắt ab tại p. chứng minh rằng : mb/mc nhân nc/na nhân pa/pb =1
cho tam giac abc; i la 1 điểm trong tam giac. IA IB IC theo thu tu cat ,BC, AC.AB = M,N,P .C/Minh: IA/IM=NA/NC+PA/PB
cho tam giác ABC nhọn, M,N,P lần lượt là trung điểm AB,AC,BC. Từ M vẽ MC' vuông góc AB và MC'=AM=BM, từ N vẽ NB' vuông góc AC và NB'=NA=NC, từ P vẽ PA' vuông góc BC và PA'=PB=PC. chung minh B'C'=AA'.
giai giup nha
Cho tam giác ABC và ba đường phân giác AM, BN, CP cắt nhau tại O. Ba cạnh AB, BC, CA tỉ lệ
với 4, 7, 5.
a) Tính MC, biết BC = 18cm.
b) Tính AC, biết NC – NA = 3cm.
c) Tính tỉ số OP/OC
.
d) Chứng minh: PA x MB x NC= NA X MC x PB