(2)
Từ (1) và (2) ta suy ra: \(ah_a=bh_b=ch_c=\left(a+b+c\right)\)Hay: \(\frac{a}{\frac{1}{h_a}}=\frac{b}{\frac{1}{h_b}}=\frac{c}{\frac{1}{h_c}}=\frac{a+b+c}{\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}}=a+b+c\)Nên: \(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}=1\)Giải phương trình này với các nghiệm \(h_a;h_b;h_c\)nguyên dương với giả thiết \(h_a\ge h_b\ge h_c\)\(h_c=1\)=> ko có \(h_a;h_b\)thỏa mãn.\(h_c=2\)thì \(h_b\)ko thể =2 vì ko có \(h_a\)thỏa mãn; nếu \(h_b=3\)thì \(h_a=6\); nếu \(h_b\ge4\)thì \(h_a\le4\)trái giả thiết nên loại.\(h_c=3\)thì \(h_b=3;h_a=3\)Nếu \(h_c>3\)thì \(\frac{1}{h_c}< \frac{1}{3}\)số lớn nhất nhỏ hơn trung bình cộng 3 số, vô lý=> Loại.Đối với nghiệm \(h_a;h_b;h_c\)=(6;3;2) có 1 đường cao bằng 2 tức là gấp 2 lần bán kính đường tròn nội tiếp - vô lý nên bị loại (Bạn có thể vẽ hình để chứng minh).Nên chỉ có 1 nghiệm \(h_a;h_b;h_c\)=(3;3;3) thỏa mãn và khi đó các cạnh \(a=b=c=2\sqrt{3}\)chịu thôi mik tính mãi ko ra kết quả