a) Xét tam giác ABE có:
\(\widehat{BAE}=90^0\)
\(\Rightarrow\widehat{BEA}< 90^0\)
Mà \(\widehat{BEA}+\widehat{BEC}=180^0\)(kề bù)
\(\Rightarrow\widehat{BEC}>90^0\)
=> \(\widehat{BEC}\) là góc tù
b) Ta có: \(\widehat{BEC}+\widehat{BEA}=180^0\)(kề bù)
\(\Rightarrow\widehat{BEA}=180^0-\widehat{BEC}=180^0-110^0=70^0\)
Xét tam giác ABE vuông tại A có:
\(\widehat{ABE}+\widehat{BEA}=90^0\)
\(\Rightarrow\widehat{ABE}=90^0-70^0\Rightarrow\dfrac{1}{2}\widehat{ABC}=20^0\)
\(\Rightarrow\widehat{ABC}=40^0\)
Xét tam giác ABC vuông tại A:
\(\widehat{ABC}+\widehat{ACB}=90^0\)
\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-40^0=50^0\)