Hình bạn tự vẽ nhé !
* Ta có : AB2 = AC2 + BC2
AB2 = 0,9 + 1,2 = 2,1
==> AB ~ 1,5 (m)
sinB = AC/AB = 0,9/1,5 = 0,6
CosB= BC/AB = 1,2/1,5=0,8
tanB= AC/BC = 0,9/1,2=0,75
cotB= BC/AC=1,2/0,9=1,3
Ta có AC vg AB
\(BC^2\) = \(AC^2\)+ \(AB^2\)
Hay \(BC^2\) = \(0,9^2\)+ \(1,2^2\)
\(BC^2\)= \(2,25\)
=> \(BC\) = \(\sqrt{2,25}\) = \(1,5\)cm
\(\sin\widehat{B}\)= \(\frac{AC}{AB}\)=\(\frac{0,9}{1,5}\)= \(0,6\)
\(\cos\widehat{B}\)= \(\frac{BC}{AB}\)=\(\frac{1,2}{1,5}\)= \(0,8\)
\(\tan\widehat{B}\)= \(\frac{AC}{BC}\)= \(\frac{0,9}{1,2}\)= \(0,75\)
\(\cot\widehat{B}\)= \(\frac{BC}{AC}\)= \(\frac{1,2}{0,9}\)= \(\frac{4}{3}\)
\(\sin\widehat{C}\)= \(\cos\widehat{B}\)= \(0,8\)
\(\cos\widehat{C}\)= \(\sin\widehat{B}\)= \(0,6\)
\(\tan\widehat{C}\)= \(\cot\widehat{B}\)= \(\frac{4}{3}\)
\(\cot\widehat{C}\)= \(\tan\widehat{B}\)= \(0,75\)