Cho tam giác ABC vuông tại C (AB < AC) . Trên cạnh AB lấy điểm D sao cho AD = AC . kẻ qua D đường thẳng vuông góc với Ab cắt BC tại E . AE cắt CD tại I .
a) Chứng Minh : AE là phân giác góc CAB
b) Chứng Minh : AE là trung trực của CD
c) So sánh : CD và BC
d) M là trung điểm của BC , DM cắt BI tại G , CG cắt DB tại K . Chứng Minh : K là trug điểm của DM
a) Xét tam giác vuông ECA và EDA có:
Cạnh EA chung
CA = DA (gt)
\(\Rightarrow\Delta ECA=\Delta EDA\) (Cạnh huyền, cạnh góc vuông)
\(\Rightarrow\widehat{CAE}=\widehat{DAE}\) (Hai cạnh tương ứng)
Hya AE là phân giác góc CAB.
b) Theo câu a, \(\Delta ECA=\Delta EDA\Rightarrow EC=ED\)
Ta có EC = ED; AC = AD nên AE là trung trực của CD.
c) Kẻ CH vuông góc AB.
Ta luôn có D nằm giữa B và H nên HD < HB
Vậy thì CD < CB (Quan hệ đường xiên hình chiếu)
d) Ta có I là trung điểm của CD; M là trung điểm của BC nên DM, BI là các đường trung tuyến của tam giác BCD.
Vậy G là trọng tâm hay CK cũng có trung tuyến.
Vậy K là trung điểm BD.