a ) Xét △ABC vuông tại A và △ABD vuông tại A có :AC = AD ( gt )
góc BAD = góc BAC = 90 độ
BA là cạnh chung
=> △ABC = △ABD ( c.g.c )
b ) Vì △ABC = △ABD ( cmt )
=> BD = BC ( 2 cạnh tương ứng )
Ta có : CBA + CBM = 180o ( 2 góc kề bù )
DBA + DBM = 180o ( 2 góc kề bù )
Mà : ABC = ABD ( cmt )
=> CBM = DBM
Xét △CBM và △DBM có :
BC = BD ( cmt )
CBM = DBM ( cmt )
BM là cạnh chung
=> △CBM = △DBM ( c.g.c )
a) CM tg ABC=ABD
- Có : \(\widehat{BAC}+\widehat{BAD}=180^o\left(kb\right)\)
\(\Rightarrow90^o+\widehat{BAD}=180^o\)
\(\Rightarrow\widehat{BAD}=90^o\)
- Xét tg ABC và tg ABD có :
\(\widehat{BAC}=\widehat{BAD}=90^o\)
AB-cạnh chung
AC=AD(gt)
=> Tg ABC=ABD(c.g.c)
b) CM tg MBD=MBC
- Do tg ABC=ABD(cmt)
=> BD=BC
\(\widehat{DBM}=\widehat{CBM}\)
- Xét tg MBD và MBC có :
BD=BC(cmt)
BM-cạnh chung)
\(\widehat{DBM}=\widehat{CBM}\left(cmt\right)\)
=> Tg MBD=MBC(c.g.c)
#H
Tam giác ABC vuông tại A => tam giác ABD cũng vuông tại D
a) Xét 2 tam giác : ABD và BẮC, ta có:
AD = AC (GT)
AB LÀ CẠNH CHUNG
vậy tam giác ABD = tam giác ABC ( 2 cạnh góc vuông bằng nhau )
b) Từ tam giác ABD = tam giác ABC ( 2 cạnh góc vuông bằng nhau )
=> góc ABD = góc ABC ( 2 góc tương ứng )
=> BD = BC ( 2 CẠNH TƯƠNG ỨNG )
Xét 2 tam giác : MBD và MCB, ta có :
BM là cạnh chung
góc ABD = góc ABC
BD = BC
=> tam giác MBD = TAM GIÁC MCB ( c . g. c)