cho tam giác ABC vuông tại A, PHân giác BD. Qua D kẻ đường vuông góc BC tại E
a, CMR tam giác BAD=Tam giác BED
B, Chứng minh BD là đường trung trực của AE
c, Chứng minh AD < DC
d, TRên tia đối của tia AB lấy điểm F sao cho AF = CE.CM Ba điểm E, D, F thẳng hàng
Cho tam giác ABC vuông tại A và tia phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E. CMR:
a) tam giác BAD = tam giác BED
b) BD là trung trực của AE
c) AD < DC
d) Trên tia đối của tia AB lấy F sao cho AF = CE. CM 3 điểm E, D, F thẳng hàng
Cho tam giác ABC vuông tại A, phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E
a) Chứng minh : Tam giác BAD = Tam giác BED
b) Chứng minh : BD là trung trực của AE
c) Chứng minh: AD < DC
d) Trên tia đối của tia AB lấy điểm F sao cho AF = CE . Chứng minh 3 điểm E,D,F thẳng hàng
Cho tam giác ABC, phân giác BD. Qua D kẻ đường thẳng vuông góc với BC tại E
a, Chứng minh tam giác BAD =tam giác BED
b, CM BD là đường trung trực của AE
c, Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh E,D,F thẳng hàng
Cho tam giác ABC vuông tại A,đường phân giác BD.Kẻ DE vuông góc với BC (E thuộc BC).Trên tia đối của tia AB lấy điểm F sao cho AF=CE.CM:
a/ Tam giác ABD= tam giác EBD
b/BD là đường trung trưc của đoạn thẳng AE
c/AD<DC
d/Góc ADF= góc EDC và E,D,F thẳng hàng
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) AD<DC
c) Ba điểm E, D, F thẳng hàng
Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.
a) Tính BC
b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB
c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông
d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF
Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:
a) Tam giác ANC là tam giác cân
b) NC vuông góc BC
c) Tam giác AEC là tam giác cân
d) So sánh BC và NE
Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:
a) Góc ACE= góc ABD
b) Tam giác ABD = tam giác ECA
c) Tam giác AED là tam giác vuông cân
Cho tam giác ABC vuông tại A, phân giác DB , D thuộc AC. Qua D kẻ đường thẳng vuông góc với BC tại E. Trên tia đối của AB lấy điểm F sao cho AF=CE. Chứng minh 3 điểm E,D,F thẳng hàng
Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc BC (E thuộc BC).Trên tia đối của tia AB lấy điểm F sao cho AF=CE. Chứng minh
a/ Tam giác ABD=tam giác EBD
b/ BD là đường trung trực của đoạn thẳng AE
c/ AD<DC
d/ Góc ADF=góc EDC và E,D,F thẳng hàng
Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ DE vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng: a) BD là đường trung trực của AE. b) AD<DC c) Ba điểm E, D, F thẳng hàng