a) tam giác AHB vuông tại B có HE là đường cao \(\Rightarrow AE.AB=AH^2\)
tam giác AHC vuông tại C có HF là đường cao \(\Rightarrow AF.AC=AH^2\)
\(\Rightarrow AE.AB=AF.AC\)
b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) là hình chữ nhật
\(\Rightarrow O\) là trung điểm EF và \(OE=OF=\dfrac{1}{2}EF=\dfrac{1}{2}AH\)
Tam giác ABC vuông tại A có đường cao AH
\(\Rightarrow BH.CH=AH^2=4.\dfrac{1}{2}AH.\dfrac{1}{2}AH=4.OE.OF\)