Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC, kẻ EF vuông góc với BC tại F
a) Cho BC = 20 cm và sinC = 0,6. Giải tam giác ABC
b) Chứng minh AC2 = \(2CF\times CB\)
c) Chứng minh AF = BC ✖ cosC
Cho tam giác ABC vuông tại A. Từ trung điểm E của cạnh AC kẻ EF vuông góc với BC tại F.
a) Cho BC = 20cm, sinC = 0,6. Giải tam giác ABC;
b) Chứng minh rằng: AC2 = 2CF.CB
c) Chứng minh: AF = BE.cosC
Cho tam giác ABC vuông tại A.Từ trung điểm E của cạnh AC,vẽ EF vuông góc với BC
a,Chứng minh AF=BE.Cos C
b, cho BC =20cm, sinC =0,6Tính diện tích AEFB
Cho tam giác ABC cân tại A, trên cạnh AC lấy điểm E, kẻ EF vuông góc với AB tại F. Gọi D là giao điểm của EF và BC. Biết AF = CD, chứng minh rằng SAEF = 2SCD
Cho ΔABC vuông tại A. Từ trung điểm E của cạnh AC kẻ EF ⊥ BC.
a) CM: AF = BC.cosC
b) BC = 20, sinC = 0,6. Tính \(S_{ABC}\)
c) AF cắt BE tại O. Tính sinAOB
Cho tam giác ABC vuông tại A, đường cao AH (HϵBC)
a) Biết AB = 12cm, BC = 20cm. Tính AC, B, AH (góc làm tròn đến độ)
b) Kẻ HE vuông góc AB (EϵAB). Chứng minh: AE.AB=AC2-HC2
c) Kẻ HF vuông góc AC (FϵAC). Chứng minh: AF=AE.tanC
giải giúp mình câu c với ạ
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.
Cho tam giác ABC vuông tai A, đường cao AH . Đường tròn đường kính AH cắt các cạnh AB, AC lần lượt tại E và F.
1. Chứng minh tứ giác AEHF là hình chữ nhật;
2. Chứng minh AE.AB = AF. AC;
3.Đường rhẳng qua A vuông góc với EF cắt cạnh BC tại I. Chứng minh I là trung điểm của đoạn BC;
4. Chứng minh rằng nếu diện tích tam giác ABC gấp đôi diện tích hình chữ nhật AEHF thì tam giác ABC vuông cân.
tam giác ABC vuông tại A , đường cao AH. từ trung điểm E của AC vẽ EF vuông góc với BC tại F
chứng minh AF=BE.cosC