a) Xét \(\Delta\)vuông BAD và \(\Delta\)vuông BHD có :
Góc BAD = góc BHD ( = 900 )
BD chung
Góc ABD = góc HBD ( BD là tia phân giác )
\(\Rightarrow\)\(\Delta\)BAD = \(\Delta\)BHD (cạnh huyền - góc nhọn )
\(\Rightarrow\)AD = DH ( cặp cạnh tương ứng ) (1)
b) Xét tam giác DHC :
Góc DHC = 900 > góc C
\(\Rightarrow\)DC > DH ( quan hệ giữa góc và cạnh đối nhau ) (2)
Từ (1) , (2) \(\Rightarrow\)DC > AD
c) theo chứng minh câu a có :
Tam giác BAD = tam giác BHD
\(\Rightarrow\) BA = BC
Xét tam giác ADK và tam giác HDC có:
Góc KAD = góc CHD ( = 900 )
AD = DH ( cm câu a)
Góc ADK = góc HDC ( đối đỉnh )
\(\Rightarrow\)tam giác ADK = tam giác HDC
\(\Rightarrow\)AK = HC ( cặp cạnh tương ứng )
Ta có :
BK = BA + AK
BC = BH + HC
mà BA = BH ; AK = HC
\(\Rightarrow\)BK = BC
\(\Rightarrow\) tam giác KBC cân
ADK VÀ HDC ko đối đỉnh nhé bạn