Cho đường tròn (O;R) đường kính BC, A là 1 điểm trên đường tròn sao cho AB=R, hạ AH vuông góc với BC đường tròn tâm I, đường kính AH cắt BC, AC, đường tròn(O) tại D,E,F.
a. Chúng minh tứ giác ADHE là hình chữ nhật.
b. Chứng minh tứ giác BDEC nội tiếp.
c. Chứng minh OA vuông góc DE.
d. AF cắt đường thẳng BC tại S Chứng minh S, D, E thẳng hàng.
Cho đường tròn (O;R) đường kính BC, A là điểm trên đường tròn (A khác B, C). Kẻ AH vuông góc với BC (H thuộc BC). Đường tròn tâm (I) đường kính AH cắt AB, AC và (O) tại D,E,F.
a. Cm AH=DE.
b. CM tg BDEC nội tiếp và OA vuông góc với DE.
c, AF cắt BC tại S. Cm S, D, E thẳng hàng.
d.Cho sđAB = 60 độ. Tính diện tích tg BDEC theo R.
GIẢI GIÚP MK CÂU C, D MK ĐANG CẦN GẤP. CẢM ƠN !!!
Cho tam giác ABC vuông ở A, đường cao AH vẽ đường tròn tâm O đường kính AH. Đường tròn này cắt các cạnh AB, AC lền lượt tại D và E
a,Chứng minh tứ giác ADHE là hình chữ nhật và 3 điểm D, O, E thẳng hàng.
b,Các tuyến tiếp của đường tròn tâm O kẻ từ D và E cắt cạnh BC tương ứng tại M và N. Chứng minh M,N lần lượt là trung điểm của các đoạn HB, HC
c.Cho AB = 8cm, AC=9cm. Tính diện tích tứ giác MDEN
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
cho tam giác ABC(AB<AC)nội tiếp đường tròn O,AH là đường cao .đường tròn tâm k đk AH cắt AB,AC ,(o) lần lượt tại D,E,I;AI cắt BC tại M.chứng ninh:
a.tứ giác AEHD nội tiếp
b.AB nhân AD=AE nhân AC và tứ giác BCED nội tiếp
c.OK vuông góc với AM => K là trực tâm của tam giác MAO
d.OA vuông góc với DE => 3 điểm M,D,E thẳng hàng
Cho tam giác ABC nhọn ( AB<AC) nội tiếp đường tròn tâm O. Vẽ đường cao AH. Gọi D,E lần lượt là hình chiếu vuông góc của H lên AB,AC
a, chứng minh: OA vuông góc vs DE
b, DE cắt BC tại K. CM: KH^2=KB*KC
c, Đường thẳng KA cắt (O) tại F. Gọi I là tâm đường tròn ngoại tiếp tứ giác BCED. Chứng minh: F,H,I thẳng hàng
Cho tam giác ABC nội tiếp đường tròn tâm O,đường kính BC , đường cao AH
1> Cho BH = 9,HC=16.Tính AH,AB,AC và bán kính đường tròn nội tiếp tam giác ABC
2>Vẽ đường tròn tâm I,đường kính AH. Đường tròn tâm I cắt AB ở D,cắt AC ở E và cắt đường tròn tâm O ở K ,K khác A.
Chứng minh AEHD là Hình Chữ Nhật và D,I,E thẳng hàng
3> Chứng minh 0A vuông góc với DE
4>AK cắt BC ở F.Chứng minh F,D,E thẳng hàng
Cho đường tròn (O;R) đường kính BC. Từ một điểm A tùy ý trên đường tròn (O) vẽ AH vuông góc với BC tại H. Vẽ đường tròn tâm I đường kính AH cắt AB và AC lần lượt tại D và E và cắt đường tròn (O) tại F.
a) DE cắt BC tại S, c/m rằng S,F,A thẳng hàng
b) Tính theo R diện tích tứ giác BDEC nếu \(DE=\frac{R\sqrt{3}}{2}\)
Mọi người giải giúp mình câu (d) của bài này với ạ
Cho tam giác ABC nhọn (AB < AC) nộp tiếp (O;R), có các đường cao BE, CF cắt nhau tại H. Gọi I,K lần lượt là trung điểm của BC, AH
a/ Chứng minh các tứ giác AEHF, BCEF nội tiếp đường tròn. Suy ra IK vuông góc EF
b/ AH cắt BC tại D. Chứng minh tam giác DEF nội tiếp đường tròn đường kính IK
c/ Các đường thẳng ED, BC cắt nhau tại M. AM cắt (O) tại N. Chứng minh HN vuông góc AM
d/ Kẻ tiếp tuyến tại B của (O) cắt ME tại S. Chứng minh 5 điểm B S N E I cùng thuộc 1 đường tròn