Bài 1: Cho tam giác ABC có AB= 12 cm, AC= 18cm, đường phân giác AD. Lấy I thuộc AD sao cho AI= 2ID. Gọi E là giao điểm của BI và AC.
a) Tính AE/EC
b) Tính AE và EC
Bài 2: Cho tam giác ABC cân tại A, góc A = 135 độ. Trên BC lấy điểm M và N sao cho AM vuông góc với AC, AN vuông góc với AB. CMR: BM^2= BC.MN
Bài 3: Cho tam giác ABC vuông tại B, AB = 4cm, BC=3cm, đường phân giác BD. Kẻ đường thẳng vuông góc với BD tại B cắt tia AC tại E Tính CD và CE.
Giúp mik nha mn mik đag cần gấp lắm, chỉ 2 bài trong số kia cũng đc, cảm ơn các bạn nhiều!
Bài 5
Cho tam giác ABC vuông tại A số AB < AC. Gọi M là trung điểm của BC kẻ MD vuông góc với AB tại D,ME vuông góc với AC tại E
A) cmr: AM=DE
B) cmr D là trung điểm của AB. Và tứ giác BDEM là hình bình hành
C) gọi gọi AH là đg cao của tam giác ABC (h thuộc BC ) . Cmr: tứ giác DHME là hình thang cân
cho tam giác ABC vuông tại A. Phân giác góc BAC cắt cạnh BC tại D kẻ DE vuông góc với AB tại E, kẻ DF vuông góc với AC tại F a, chứng minh AEDF là hình vuông.
b,Gọi M,N lần lượt là trung điểm của BD và CD chứng EMD=2.ABC và EM//FN.
c,cho AB=6cm,AC=8cm. tính diện tích hình vuông AEDF.
Bài 1: Cho tam giác ABC cân tại A, đường cao AH. Gọi I là trung điểm của AH. E là giao điểm của BI và AC. Tính các độ dài AE và EC biết AH =12cm; BC = 18cm
Bài 2: Cho tam giác ABC (AC > AB), đường cao AH. Gọi D,E,K theo thứ tự là trung điểm của AB, AC,BC. CMR:
a, DE là đường trung trực của AH
b, DEKH là hình thang cân
Bài 3: Cho tam giác ABC cân tại A, đường cao AH. Gọi D là chân đường vuông góc kẻ từ H đến AC. I là trung điểm của HD.
a, Gọi M là trung điểm của CD. CMR: MI vuông góc với AH
b, CM: AI vuông góc với BD
Cho tam giác ABC vuông tại A , AB>AC M là trung điểm của BC ! ME vuông góc với AC , MD vuông góc với AB
A) cmr ADME là hình cn
B) tứ giác ADME cần thêm diều kiện gì để thành hình chữa nhật
Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC
Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR: góc EMD = 3 góc AEM
Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC
b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.
Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông
1)Cho tam giác ABC vuoog tại A, D thuộc AB,E thuộc AC. M,N,P,Q theo thứ tự là trung điểm DE,BE,BC,DC
CMR MP=QN
2) Cho tam giác ABC, đường cao AH. I,K,M,N theo thứ tự trung điểm AB,AC,HC,HB.CMR IM=KN
3) Cho tam giác ABC vuông tại A, đường cao AH. Vẽ HB vuông góc vs AB, HE vuông góc AC (F thuộc AB,F thuộc AC) .I trung điểm BC. CMR
a)EF=AH
b) AI vuông góc È
c)M trung điểm HB, N trung điểm HC.CMR EMFN là hthang vuông
Bài 1: Tam giác ABC vuông cân tại A, M thuộc AC. Kẻ tia Ax vuông góc với BM cắt BC tại H. K là điểm đối xứng với C qua H. Kẻ tia Ky vuông góc với BM cắt AB tại I. Tính góc AIM?
Bài 2: Tam giác ABC cân tại A với góc A nhọn. CD là đường phân giác của góc ACB ( D thuộc AB ). Qua D kẻ vuông góc với CD cắt CB tại E. CMR: BD = 1/2 EC.