Cho tam giác ABC vuông tại A : M là điểm bất kỳ thuộc AC, từ C kẻ dường thẳng vuông góc với BM, cắt BM tại D, cắt AB tại E.
a) CM \(\widehat{EDA}\) = \(\widehat{EBC}\)
b) CM rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD+CM.AC có giá trị không đổi
cho tam giác ABC vuông tại A.Lấy một điểm M bất kì trên cạnh AC.Từ C vẽ một đường thẳng vuông góc với tia BM ,đường thẳng này cắt tia BM tại D cắt tia BA tại E
a)Chứng minh EA.EB=ED.EC và góc EAD=góc ECB
b)cho gócBMC=120độ và diện tích tam giác AED=36cm vuông.Tính diện tích tam giác EBC
c)chứng minh rằng khi diểm M di chuyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi
d)kể DH vuông góc với BC(H thuộc BC).gọi P,Q lần lượt là trung điểm của các cạnh BH,DH.chứng minh CQ vuông góc với PD
Cho tam giác ABC vuông tại A,lấy một điểm M bất kì trên cạnh AC, từ C kẻ một đường thẳng vuông góc với tia BM. Đường thẳng này cắt tia BM tại D, cắt tia BA tại E.
a) Cho \(\widehat{BHC}=120^0\)và SAED=36 cm2. Tính SEBC
b) Chứng minh rằng: Khi điểm M di chuyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi
c) Kẻ \(DH\perp BC\left(H\in BC\right)\).Gọi P,Q lần lượt là trung điểm của các đoạn BH,DH. Chứng minh \(CQ\perp PD\)
Cho tam giác ABC vuông tại A. Lấy 1 điểm M bất kì trên cạnh AC, từ C vẽ 1 đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E
a) Cho góc BMC = 120 độ và diện tích tam giác AED = 36 cm2. tính diện tích tam giác EBC
b) C/m: Khi điểm B di chuyển trên cạnh AC thì tổng BM.BD + CM.CA có giá trị không đổi
c) Kẻ DH vuông góc với BC. Gọi P,Q lần lượt là trung điểm của đoạn thẳng BH,DH. C/m: CQ vuông góc với PD
1. Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E.
a) Chứng minh: EA.EB = ED.EC và góc EAD = góc ECB
b) Cho góc BMC = 1200 và SAED = 36 cm2. Tính SECB?
c) Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD + CM.CA có giá trị không đổi.
d) Kẻ DH ⊥ BC (H∈ BC). Gọi P, Q lần lượt là trung điểm của các đoạn thẳng BH, DH. Chứng minh CQ ⊥ PD
Mong các bạn giải thích rõ ràng, ko viết chung chung nhé
1.Cho tam giác ABC vuông ở A. Lấy một điểm M bất kì tren cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt BA tại E.
a) C/m EA.EB=ED.EC
b CM góc EAD = góc ECB
c) c/m khi M di chyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi.
Cần gáp nhanh lên M.n
Cho tam giác ABC vuông tại A.Lấy một điểm M bất kỳ trên cạnh AC.Từ C vẽ một đường thẳng vuông góc với tia BM,đường thẳng này cắt tia BM tại D,cắt tia BA tại E.
a.Chứng minh EA.EB=ED.EC
b.Chứng minh khi M di chuyển trên cạnh AC thì BM.BD+CM.AC có giá trị không đổi
Cho tam giác ABCD vuông tại A. Lấy điểm M bất kì trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng cắt tia BM tại D, cắt tia BA tại E.
a) Chứng minh EA.EB=ED.EC và góc EAD= góc ECB
b) Cho góc BMC= 120 VÀ SAED=36 cm vuông. Tính SEBC?
c) Chứng minh rằng khi điểm M di chuyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi.
d) Kẻ DH vuông góc với BC( H thuộc BC). Gọi P, Q lần lượt là trung điểm của các đoạn thẳng BH, DH. Chứng minhh CQ vuông góc với PD.
Cho tam giác ABC vuông tại A, lấy điểm M bất kì trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM tại D. Đường thẳng này cắt tia BA tại E.
a) Chứng minh tam giác DBE đồng dạng tam giác HAC b) Chứng minh góc EAD= góc ECB
c) Khi M di chuyển trên cạnh AC. Chứng minh BM.BD + CM.CA có giá trị không đổi