cho tam giác ABC vuông tại A
m thuộc BC sao cho MA2=MB.MC
chứng minh M là trung điểm BC hoặc AM vuông góc với BC
Cho tam giác ABC vuông tại A , đường cao AH , M là điểm bất kì trên BC , ME vuông góc với AC , MF vuông góc với AB . Chứng minh rằng AH . AM^2 = AE . AF . BC thì M trùng với H hoặc M là trung điểm BC
Cho tam giác ABC vuông tại A,đường cao AH.Gọi M là trung điểm của BC,đường thẳng qua A vuông góc với AM cắt BC tại S.Trên nửa mặt phẳng bờ BC không chừa A lấy điểm K sao cho tam giác BKC vuông cân tại K.Lấy N đối xứng với K qua M
1) Chứng minh SB.SC=SH.SM
2) Chứng minh rằng KH vuông góc SN
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O Trên cạnh BC lấy điểm d d khác B phẩy C sao cho đường thẳng vuông góc với BC tại D cắt cung nhỏ AC tại đường tròn tâm O tại M Gọi E là hình chiếu của M trên AC
a Chứng minh tứ giác CDME nội tiếp đường tròn
b/chứng minh MA x MB = MB x ME
C/Gọi i k lần lượt là trung điểm của AB và de chứng minh EK vuông góc với MK
Cho tam giác ABC vuông tại A, trên cạnh BC lấy D sao cho góc BAD bằng 45 độ
a,Cho biết AB=4, \(\frac{BD}{BC}=\frac{1}{3}\)tính diện tích tam giác ABC
b,Kẻ DE vuông góc với AB, DF vuông góc với AD Chứng minh rằng EA.EB+FA.FC=DB.DC
c, Lấy điểm M trên cạnh BCsao cho AB=AM, trên cạnh AC lấy K sao cho BK vuông góc với AM tại N .CMR:\(\frac{2MN}{AM}=\frac{BM^2}{AB^2}\)
Cho tam giác ABC cân tại A. Phân giác Ax của góc BAC cắt BC tại H. Trên cạnh AB lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho BM=CN
a,Nối MN giao với BC tại I. Chứng minh I là tđ của MN
b, Trung trực của MN giao với Ax tại O. Chứng minh OC vuông góc với AC
c,Chứng minh 4/BC^2=1/AB^2+1BC
d, Cho AB=6cm; OB=4,5cm. Tính diện tích tam giác ABC
1. Cho tam giác ABC nhọn, H là trực tâm. Trên BH lấy điểm M, trên CH lấy điểm N sao cho AM vuông góc vs CM, AN vuông góc với BN. Chứng minh tam giác AMN cân.
2.Cho tam giác ABC cân, đường cao AH. Kẻ HI,HK lầ lượt vuông góc với AB, AC tại I và K. Biết AB= 6cm, BC=10cm. Tính BI, HK và IK.
cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O , trên cung nhỏ BC lấy điểm M sao cho MB lớn hơn MC.Kẻ MI vuông góc với AB tại I , MH vuông góc với BC tại H
a,chứng minh tứ giác BIHM nội tiếp
b,gọi K là giao điểm của IH và AC . chứng minh : góc MIK bằng góc MAK và MK vuông góc với AC
c,tìm vị trí của M trên cung nhỏ BC để IK đạt giá trị lớn nhất
Cho tam giác ABC (AB < AC), có ba góc nhọn nội tiếp đường tròn (O). M là một điểm trên cung nhỏ AC sao cho MA < MC. Vẽ MH vuông góc với BC tại H. MT vuông góc với AC tại M.
a) Chứng minh rằng: góc IHM = góc HMI
b) Chúng minh rằng: tam giác BMA đồng dạng với tam giác HMI
c) Gọi E là trung điểm của HI, F là trung điểm của AB, chứng minh ME vuông góc với EF