Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
MINH LÊ ĐÌNH

Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD, kẻ DE vuông góc với BC (E thuộc BC). a) Chứng minh rằng: BD là trung trực của AE và AD < DC. b) Tia ED cắt tia BA tại F. Chứng minh: BD vuông góc với CF và AE // CF.c) Tia BD cắt FC tại G. Chứng minh rằng D cách đều ba cạnh của tam giác AEG. d) Lấy M và N tương ứng di động trên BF và BC sao cho BM + BN = BC. Chứng minh rằng trung điểm I của MN luôn nằm trên một đường thẳng cố định.

Chỉ cần làm phần c,d

Lê Loan
1 tháng 5 2022 lúc 15:57

lag a ban 

Trần Tuấn Hoàng
1 tháng 5 2022 lúc 16:52

c) -△ABG và △JBG có: \(AB=BE;\widehat{ABG}=\widehat{JBG};BG\) là cạnh chung.

\(\Rightarrow\)△ABG=△JBG (c-g-c).

\(\Rightarrow\widehat{AGB}=\widehat{JGB}\) nên GB là tia phân giác góc AGE.

AE//CF \(\Rightarrow\widehat{BAE}=\widehat{AFG}\).

-△BFC cân tại B mà BG là đường cao nên BG cũng là trung tuyến.

\(\Rightarrow\)G là trung điểm CF.

-△ACF vuông tại A có: AG là trung tuyến.

\(\Rightarrow AG=FG=\dfrac{1}{2}BC\Rightarrow\)△AFG cân tại G.

\(\Rightarrow\widehat{AFG}=\widehat{FAG}\) mà \(\widehat{BAE}=\widehat{AFG}\Rightarrow\widehat{BAE}=\widehat{FAG}\).

\(\widehat{EAC}=90^0-\widehat{BAE}=90^0-\widehat{FAG}=\widehat{GAC}\).

\(\Rightarrow\)AC là tia phân giác góc EAG.

-△AEG có: 2 đg phân giác AC và GB cắt nhau tại D.

\(\Rightarrow\)D là điểm cách đều 3 cạnh của △AEG (hay còn gọi là giao của 3 đg phân giác, tâm đường tròn nội tiếp tam giác).

Trần Tuấn Hoàng
1 tháng 5 2022 lúc 16:57

d) -Cho mình xin sử dụng t/c của lớp 8, mình sẽ c/m sau (đường trung bình của tam giác).

\(BM+BN=BC\) mà \(BM+MF=BF=BC\Rightarrow MF=BN\).

-Gọi H là trung điểm BC. Qua M kẻ đường thẳng song song với IH cắt BC tại J.

-△NMJ có: IH//MJ, I là trung điểm MN.

\(\Rightarrow\)H là trung điểm NJ nên \(NH=HJ\).

\(CJ=CH-HJ=BH-NH=BN\)

\(\Rightarrow CJ=MF\Rightarrow BM=BJ\Rightarrow\)△MBJ cân tại B.

\(\Rightarrow\widehat{BMJ}=\dfrac{180^0-\widehat{MBJ}}{2}\) mà \(\widehat{BAE}=\dfrac{180^0-\widehat{MBJ}}{2}\) 

\(\Rightarrow\widehat{BMJ}=\widehat{BAE}\Rightarrow\)MJ//AE.

-Ta dễ dàng thấy rằng điểm A,D,E cố định \(\Rightarrow\)AE, MJ cố định.

\(\Rightarrow\)Trung điểm I của MN luôn nằm trên 1 đg thẳng cố định (đg thẳng MJ).

 


Các câu hỏi tương tự
Tiến Nguyễn Minh
Xem chi tiết
Now channel
Xem chi tiết
Tôn Hà Vy
Xem chi tiết
Trần Thị Thùy Ly
Xem chi tiết
Phương Uyên Võ Ngọc
Xem chi tiết
ĐINH THU TRANG
Xem chi tiết
Trần Lạc Băng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Ta thị hải yến
Xem chi tiết