Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD, kẻ DE vuông góc với BC (E thuộc BC). a) Chứng minh rằng: BD là trung trực của AE và AD < DC. b) Tia ED cắt tia BA tại F. Chứng minh: BD vuông góc với CF và AE // CF.c) Tia BD cắt FC tại G. Chứng minh rằng D cách đều ba cạnh của tam giác AEG. d) Lấy M và N tương ứng di động trên BF và BC sao cho BM + BN = BC. Chứng minh rằng trung điểm I của MN luôn nằm trên một đường thẳng cố định.
Chỉ cần làm phần c,d
c) -△ABG và △JBG có: \(AB=BE;\widehat{ABG}=\widehat{JBG};BG\) là cạnh chung.
\(\Rightarrow\)△ABG=△JBG (c-g-c).
\(\Rightarrow\widehat{AGB}=\widehat{JGB}\) nên GB là tia phân giác góc AGE.
AE//CF \(\Rightarrow\widehat{BAE}=\widehat{AFG}\).
-△BFC cân tại B mà BG là đường cao nên BG cũng là trung tuyến.
\(\Rightarrow\)G là trung điểm CF.
-△ACF vuông tại A có: AG là trung tuyến.
\(\Rightarrow AG=FG=\dfrac{1}{2}BC\Rightarrow\)△AFG cân tại G.
\(\Rightarrow\widehat{AFG}=\widehat{FAG}\) mà \(\widehat{BAE}=\widehat{AFG}\Rightarrow\widehat{BAE}=\widehat{FAG}\).
\(\widehat{EAC}=90^0-\widehat{BAE}=90^0-\widehat{FAG}=\widehat{GAC}\).
\(\Rightarrow\)AC là tia phân giác góc EAG.
-△AEG có: 2 đg phân giác AC và GB cắt nhau tại D.
\(\Rightarrow\)D là điểm cách đều 3 cạnh của △AEG (hay còn gọi là giao của 3 đg phân giác, tâm đường tròn nội tiếp tam giác).
d) -Cho mình xin sử dụng t/c của lớp 8, mình sẽ c/m sau (đường trung bình của tam giác).
\(BM+BN=BC\) mà \(BM+MF=BF=BC\Rightarrow MF=BN\).
-Gọi H là trung điểm BC. Qua M kẻ đường thẳng song song với IH cắt BC tại J.
-△NMJ có: IH//MJ, I là trung điểm MN.
\(\Rightarrow\)H là trung điểm NJ nên \(NH=HJ\).
\(CJ=CH-HJ=BH-NH=BN\)
\(\Rightarrow CJ=MF\Rightarrow BM=BJ\Rightarrow\)△MBJ cân tại B.
\(\Rightarrow\widehat{BMJ}=\dfrac{180^0-\widehat{MBJ}}{2}\) mà \(\widehat{BAE}=\dfrac{180^0-\widehat{MBJ}}{2}\)
\(\Rightarrow\widehat{BMJ}=\widehat{BAE}\Rightarrow\)MJ//AE.
-Ta dễ dàng thấy rằng điểm A,D,E cố định \(\Rightarrow\)AE, MJ cố định.
\(\Rightarrow\)Trung điểm I của MN luôn nằm trên 1 đg thẳng cố định (đg thẳng MJ).