Cho tam giác ABC vuông tại A, M là trung điểm AC. Trên tia đối của tia MB lấy K sao cho MK = MB. Chứng minh rằng:
a/ KC vuông góc với AC
b/ AK song song với BC
Cho tam giác ABC vuông tại A, gọi M là trung điểm của AC. trên tia đối của tia MBlấy điểm K sao cho MK=MB. Chứng minh
a) KC vuông góc với AC
b) AK sông song BC
cho tam giác abc vuông tại a có m là trung điểm của ac . trên tia đối của tia mb lấy điểm k sao cho mk = mb .
a , chứng minh tamgiác bmc = tam giác kma
b chứng minh bc song song ak
c, chứng minh kc vuông góc ac
vẽ hình lun nha
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
Bài 4 (3,5 điểm) Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I. a) Nếu góc ABC bằng 60°. Tính số đo góc ACB. b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI. c) Qua K kẻ đường thẳng song song với AC, cắt Bh, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD. d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm K sao cho MK=MB. Chứng minh:
a, KC vuông góc với AC
b, AK // BC
Cho tam giác ABC vuông tại A. Gọi H là trung điểm của cạnh AC. Trên tia đối của tia HB lấy điểm K sao cho HK=HB. Chứng minh:
a) Tam giác ABH= tam giác CKH
b) KC vuông góc với AC
c) AK song song với BC
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I. a) Nếu góc ABC bằng 60°. Tính số đo góc ACB. b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI. c) Qua K kẻ đường thẳng song song với AC, cắt BH, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD. d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm K sao cho AB = BK. Gọi H là trung điểm AK. Kéo dài BH cắt AC tại I. a) Nếu góc ABC bằng 60°. Tính số đo góc ACB. b) Chứng minh ∆ABH = ∆KBH. Từ đó suy ra AK vuông góc với BI. c) Qua K kẻ đường thẳng song song với AC, cắt BH, AB lần lượt tại N và D. Chứng minh KA là tia phân giác của góc IKD. d) Kẻ AM vuông góc với BC tại M. Chứng minh 3 điểm A, N, M thẳng hàng.