Cho tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên nội tiếp đường tròn tâm O bán kính r .Tiếp tuyến tại B và C của đường tròn tâm O bán kính r cắt nhau tại D.
a) Chứng minh tứ giác ABC nội tiếp được đường tròn
b) Đường thẳng BD và AC cắt nhau tại E Chứng minh EB²= EC×EA
c) Từ m trên cung nhỏ BC vẽ MI vuông góc với BC MH vuông góc với AB MF vuông góc với AC Chứng minh E,H,F thẳng hàng
d) cho góc BAC bằng 30 độ Tính theo r diện tích của tứ giác ABCD
Cho tam giác ABC vuông tại A có AB=a, AC=b. Đường tròn tâm O đường kính AB cắt cạnh BC ởD, tiếp tuyến tại D cắt AC ở P. CM
Tứ giác AODP nội tiếp đường tròn
PD=PC
Tính độ dài đoạn thẳng OP theo a và b
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB < AC). Hai đường cao AD, CE cắt nhau tại H
VẼ HÌNH VÀ GIẢI CHI TIẾT
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB < AC). Hai đường cao AD, CE cắt nhau tại H
a) Giả sử góc A =60. Tính độ dài cung nhỏ BC và diện tích viên phân giới hạn bởi dây BC và cung nhỏ BC theo R
b) Kẻ đường kính AK cắt CE tại M, CK cắt AD tại F. Chứng minh: tứ giác BEHD nội tiếp và AH.AF=AM.AK
c) Gọi I là trung điểm của BC; EI cắt AK tại N. Chứng minh tứ giác EDNC là hình thang cân
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
cho tam giác ABC không có góc tù (AB<AC), nội tiếp đuờng tròn (O;R).Các tiếp tuyến tại B và C cắ nhau tại M. từ M kẽ đường thẳng song song với AB, đường thằng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I.
a) chứng minh tứ giác MBIC là tứ giác nội tiếp
b) chứng minh FI.FM=FD.FE
c) tính diện tích hình giới hạn bởi dây cung BC và cung nhỏ BC biết OA=5cm biết góc BAC =50 .
Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O ; R). Tiếp tuyến tại A của đường tròn (O) cắt đường thẳng BC tại M. Gọi I là trung điểm của BC.
a, Chứng minh tứ giác MAOI nội tiếp trong một đường tròn. Xác định tâm và đường kính của đường tròn này.
b, Chứng minh: MA2 = MB.MC
c, Vẽ đường kính AK của đường tròn (O). Gọi H là điểm đối xứng của K qua I. Chứng minh H là trực tâm của tam giác ABC.
d, Tia AH cắt (O) tại D. Cho BI =( R √6)/3 và góc ABC – ACB = 30o . Tính điện tích của tứ giác ABDC theo R.
Cho tam giác ABC nội tiếp trong nửa đường tròn tâm O đường kính AB=2R. Lấy H là trung điểm của dây BC.Tia OH cắt đường tròn tại D. Tia AC, AD lần lượt cắt tiếp tuyên Bx của nửa đường tròn tại E và F
a/ Chứng minh AD là tia phân giác của góc ACB
b/ Chứng minh tứ giác ECDF là tứ giác nội tiếp
c/ Cho CD= R. Tính diện tích của hình viên phân giới hạn bởi cung CDB với dây CB
GIÚP MÌNH CÂU B,C NHÉ, THANKS
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD=2R. Hai đường chéo AC và BD cắt nhau tại E. Kẻ EF vuông góc với AD tại F.
a) Cm tứ giác ABEF nội tiếp.
b) cm góc DBC = goc DBF.
c) Tia BF cắt đường tròn tâm O tại K. cm EF//CK
d) Giả sử góc EFB = 60 độ. TÍnh theo R diện tích hình giới hạn bởi dây BC và cung BC