a)Xét tam giác ABC và tam giác HAC có :
\(\widehat{BAC}=\widehat{AHC}\)
chung \(\widehat{BCA}\)
\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Leftrightarrow AH\times BC=AB\times AC\left(đpcm\right)\)
c) xét △ABE và △HBD có;
=DBH(BE là tia phân giác ABC)
BAE=BHA(=90)
⇒△ABE∼△HBD(g.g)
⇒\(\dfrac{AE}{DH}\)=\(\dfrac{AB}{HB}\)
⇒AE.HB=AB.DH