Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Hằng

Cho tam giác  ABC vuông tại A, đường cao AH vuông góc với BC. GoijI là giao điểm 3 đường phân giác của tam giác ABH, gọi Q là giao điểm 3 đường phân giác của tam giác ACh. BI cắt CQ tại K.

a/ Chứng minh rằng K là trực tâm của tam giác AIQ

b/ Chứng minh rằng: AK = IQ 

Cô Hoàng Huyền
25 tháng 9 2017 lúc 17:20

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [C, B] Đoạn thẳng i: Đoạn thẳng [A, B] Đoạn thẳng k: Đoạn thẳng [A, H] Đoạn thẳng a: Đoạn thẳng [I, B] Đoạn thẳng b: Đoạn thẳng [A, I] Đoạn thẳng c: Đoạn thẳng [A, Q] Đoạn thẳng d: Đoạn thẳng [C, Q] Đoạn thẳng g_1: Đoạn thẳng [K, I] Đoạn thẳng h_1: Đoạn thẳng [K, Q] Đoạn thẳng i_1: Đoạn thẳng [I, Q] Đoạn thẳng k_1: Đoạn thẳng [M, K] Đoạn thẳng m: Đoạn thẳng [A, K] A = (-3.68, 6.88) A = (-3.68, 6.88) A = (-3.68, 6.88) C = (15.18, 6.94) C = (15.18, 6.94) C = (15.18, 6.94) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm H: Giao điểm đường của j, h Điểm H: Giao điểm đường của j, h Điểm H: Giao điểm đường của j, h Điểm I: Giao điểm đường của l, n Điểm I: Giao điểm đường của l, n Điểm I: Giao điểm đường của l, n Điểm Q: Giao điểm đường của r, s Điểm Q: Giao điểm đường của r, s Điểm Q: Giao điểm đường của r, s Điểm K: Giao điểm đường của e, f_1 Điểm K: Giao điểm đường của e, f_1 Điểm K: Giao điểm đường của e, f_1 Điểm M: Giao điểm đường của j_1, c Điểm M: Giao điểm đường của j_1, c Điểm M: Giao điểm đường của j_1, c

a) Gọi giao điểm của BI và AQ là M. 

Ta thấy \(\widehat{AIM}=\widehat{BAI}+\widehat{ABI}=\frac{\widehat{BAH}}{2}+\frac{\widehat{ABC}}{2}=\frac{\widehat{BAH}+\widehat{ABC}}{2}=\frac{90^o}{2}=45^o\)

Ta cũng có \(\widehat{IAM}=\widehat{IAK}+\widehat{KAM}=\frac{\widehat{BAH}}{2}+\frac{\widehat{HAC}}{2}=\frac{\widehat{BAH}+\widehat{HAC}}{2}=\frac{90^o}{2}=45^o\)

Vậy thì \(\widehat{AMI}=90^o\Rightarrow IK\perp AQ\)

Hoàn toàn tương tự \(QK\perp AI\)

Vậy K là trực tâm tam giác AQI.

b) Ta có \(\widehat{KQM}=\widehat{QAC}+\widehat{QCA}=\frac{\widehat{HAC}}{2}+\frac{\widehat{ACH}}{2}=\frac{\widehat{HAC}+\widehat{ACH}}{2}=\frac{90^o}{2}=45^o\)

Xét tam giác vuông KMQ có \(\widehat{KQM}=45^o\Rightarrow\) KMQ là tam giác cân tại M hay MK = MQ.

Theo a, MA = MI vậy nên \(\Delta AMK=\Delta IMQ\left(c-g-c\right)\Rightarrow AK=IQ\left(đpcm\right).\)


Các câu hỏi tương tự
Nguyễn Ngọc Quỳnh Như
Xem chi tiết
Trần Tấn Sang g
Xem chi tiết
Trần Tấn Sang g
Xem chi tiết
Dương Thị Phương Anh
Xem chi tiết
Lê Đức Anh
Xem chi tiết
VõThị Quỳnh Giang _
Xem chi tiết
Trần ngô hạ uyên
Xem chi tiết
Nguyễn Doãn Kiệt
Xem chi tiết
lê việt
Xem chi tiết