Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH) kẻ tiếp tuyến BD, CE với đường tròn ( D,E là các tiếp điểm khác H) chứng minh:
a/ Ba điểm D, A, E thẳng hàng.
b/ DE tiếp xúc với đường tròn có đường kính BC.
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH) kẻ tiếp tuyến BD, CE với đường tròn ( D,E là các tiếp điểm khác H) chứng minh:
a/ Ba điểm D, A, E thẳng hàng.
cho tam giác ABC vuông tạ A , đường cao AH . Vẽ đường tròn tâm A bán kính AH , vẽ các tiếp tuyến BD,CE với đường tròn tâm D (E là tiếp điểm khác H)
a, chứng minh BD+CE=BC và 3 điểm A,D,E thẳng hàng
b, chứng minh BD.CE = \(\frac{DE^2}{4}\)
c, đường tròn tâm M đường kính CH cắt đường tròn tâm A bán kính AH tại N(N khác H). chứng minh CN song song với AM
Cho đường tròn tâm O bán kính R, A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AE đến đường tròn O, E là tiếp điểm. Vẽ dây EH vuông góc AD tại M.
a, cho biết R=5cm, OM=3cm. Tính độ dài dây EH.
b, Chứng minh AH là tiếp tuyến đường tròn(O)
c, Đường thẳng qua O vuông góc với OA cắt AH tại B. Vẽ tiếp tuyến BF với đường tròn(O), F là tiếp điểm. Chứng minh ba điểm O,E,F thẳng hàng và BF.AE không đổi.
d, Trên tia HB lấy điểm I (I khác B). Qua I vẽ tiếp tuyến thứ 2 với đường tròn(O), cắt các đường thẳng BF, AE lần lượt tại C và D. Vẽ đường thẳng IF cắt AE tại Q. Chứng minh AE=DQ
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R đường kính BC với AB<AC
a, tính góc BAC
b, vẽ đường tròn tâm I đường kính AO cắt AB , AC lần lượt tại H , K . chứng minh rằng ba điểm H , I ,K thẳng hàng
c, tia OH , OK cắt tiếp tuyến tại A với O lần lượt tại D , E . chứng minh rằng BD+CE=DE
D, chứng minh đường tròn đi qua 3 điểm D , O ,E tiếp xúc với BC
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O) .Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H giao điểm của OA và BC.
a, Chứng minh OA vuông góc với BC tại H
b. Từ B vẽ đường kính BD của (O). đường thẳng AD cắt (O) tại E ( khác D).Chứng minh AE.AD = AH. AO
c.Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh FD là tiếp tuyến của (O).
Cho điểm M nằm ngoài đường tròn (O;R). Vẽ tiếp tuyến MA và cát tuyến MCB (MB > MC) nằm khác phía đối với đường thẳng MO. Đường tròn tâm I đường kính BC cắt AB, AC lần lượt tại E và D. BD cắt CE tại H, K là trung điểm AH.
a) Chứng minh tứ giác MAOI nội tiếp, xác định tâm S của đường tròn ngoại tiếp tứ giác này; và K là tâm đường tròn ngoại tiếp của tam giác ADE.
b) Chứng minh: OA song song KI.
c) Đường tròn (I;IK) cắt (S) tại F sao cho F nằm trên nửa mặt phẳng có bờ là MB không chứa điểm A. Chứng minh A, H, F thẳng hàng.
d) AH cắt BC tại G. Tia GD cắt MA tại N. Chứng minh tứ giác ANFB là tứ giác nội tiếp.
Cho nửa đường tròn O , đường kính AB . C là điểm nằm trên nửa đường tròn . GỌi D là 1 điểm trên AB qua D kẻ đường vuông góc với AB qua D cắt BC tại F cắt Ac tại E. Tiếp tuyến của nửa đường tròn tại C cắt EF tại I.
a) Chứng minh : I là trung điểm của EF.
b) Chứng minh : OC là tiếp tuyến của đường tròn ngoại tiếp tam giác ECF
cho tam giác ABC, vẽ đường tròn đường kính BC cắt AB tại E, cắt AC tại D . BC và CE cắt nhau tại H . chứng minh rằng
a, AH vuông góc với BC tại F(F thuộc BC)
b, FA.FH=FB.FC
c, 4 điểm A,E,H,D cùng thuộc 1 đường tròn , xác định tâm I của đường tròn
d, IE là tiếp tuyến của đường tròn đường kính BC